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Preface

This collection of stability techniques was begun in 1959 to provide

a masters thesis for the author at the University of Virginia. It was

almost immediately evident that at that time such a collection was

impossible. Somesignificant gaps in the theory were still unfilled.

Access to Russian techniques had not yet been provided. In the intervening

years these obstacles have been eliminated.

The theory of functions of a complex variable provides most of the

necessary background for understanding these techniques, and so a brief

discussion is provided in Chapter I. This chapter only discusses those

aspects of the subject needed in subsequent chapters, and is not intended

to be a thorough treatment. However, a great many theorems, which are not

discussed in the text, are presented as problems at the end of the chapter.

Subsequent chapters first discuss the background necessary for the

techniques and then the techniques themselves. The Laplace transform is

used for convenience, although it is not essential to the subject.

This material has been presented as a course of one semester length at

the Pennsylvania State University. It was not necessary to provide many

problems of a numerical nature, since the students had no trouble at all

providing their own. It is for this reason the problems at the end of each

chapter are for the most part theoretical.

We finally remark that sampleddata systems are not include_ since many

excellent books on that subject are now appearing, which provide a muchmore

thorough discussion than would be possible here.

I would like to express many thanks to Mr. Robert Fornaro, who wrote the

computer program mentioned in Appendix I; to Mr. Gerald Kraus and Mr. Robert
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McNeil, who helped with the examples in Appendix II and with the proof-reading,

and to Mrs. Robert D. Moyer, who did a beautiful job of typing the manuscript.

Finally, my thanks go to the National Aeronautics and SpaceAdministration who

gave me support through NASAGrant_GR-39-009-041.--- __

Allan M. Krall

August, 1965|0Q,_
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I. Functions of a ComplexVariable

Preliminary Remarks: We assume that the reader is familiar with the following

basic properties of the complex numbers and complex functions. If z = x + iy

ie
with x = r cos @ and y = r sin 8, then z = r(cos 8 + i sin 8) = re

Further, r = Izl and 9 = arg z.

Similarly if

f(z) = Re f(z) + i Im f(z)

where Re f(z) and Im f(z) are real valued, then

If(z)l = [(Re f(z)) 2 + (Im f(z))2] ½ ,

arg f(z) = tan -I Jim f(z)/Re f(z)]

and

i arg f(z)
f(z) = If(z)le

If

n

w = zI z2 z3 ... z = _ z.n J
j=l

and

i£.
J

z. = r.e
J J

then

W

n

n r. • exp i _ 9

j=l j j=l j

Thus

and

arg w =

n

E e.

j=l J

n

N r.

j=l J



Finally

SO

n n

log w = E log r. + i E 8. ,

j=i J j=i j

log w = log lwl + i arg w

Definition: Let z = x + iy where x and y are real valued. Let D be

a set in the complex plane K. If for all z in D, f(z) is uniquely

defined and in K, then f(z) is a function of the complex variable z

whose domain is D.

In what follows we will assume that D is a simply connected open

set in K.

Definition: f(z) is continuous at z0 i__n D if for every e > 0, there

is a 6(= 6(¢,z0) ) such that if z is in D and

then

Iz - z01 < 6 ,

If(z) - f(z0) I < c

Another way of saying this is that

limit f(z) = f(z0)

Z _Z 0

Note that z can approach z0 in any manner whatsoever.

Definition: f(z) is differestiable.at z0 if there is a number f'(z O)

such that

f(z) f(Zo) = f'(Zo)limit , , ,

z _ z0 z z0



Again note that the path z takes in approaching z
o

A function differentiable in this sense is analytic.

is arbitrary.

Definition: The real part of f(z), u(x,y), i_._s

u(x,y) = If(z) + f(--_)]/2

The imaginary part of f(z), v(x,y), i__ss

m

v(x,y) = If(z) - f(z)]/2i

Note that

f(z) = u(x,y) + iv(x,y)

Theorem i.I: If f(z) is analytic at z0, the_.____n

_u = _v _u = _v
bx bY ' bY bx

a__!tx = Xo, Y = YO"

These equations are the Cauchy-Riemann equations.

Proof: If we compute the derivative at z0, we find that

[u(x,Y0) - U(Xo,Yo)
f' (z0) = limit

x -* x 0 k x x 0

+ i v(x,YO) " l!Xo,Y0) ]

x x0 j '

f,(z0) = _u + i
x b x = x0 , y = YO

if z is restricted to the values z = x + iy 0.



_u(x0,Y) - u(x,Y0)f'(z0)._ = limit 7 : + ily
Y _ Y0 IY0

v(x0,{) - V(x0,Y0)_
ly ly 0

f'(z0) = - i _u +
BY b = x0, Y = Y0

if z is restricted to values z = x 0 + iy. Comparing these expressions

completes the proof.

Theorem 1.2. If the partial derivatives
_u _u _v _v exist in a
5x' BY' bx' bY

D, are continuous in D and satisfz the Cauchy-Riemann equations,

then f(z) = u(x,y) + i v(x,y) is analytic in D.

Proo f :

f(z) f(z 0) = [u(x,y) - u(x0,Y0) ] + i[v(x,y) v(x0,Y0) ]

= [u(x,y) - u(x,y 0) + u(x,y 0) u(x0,Y0)]

+ i[v(x,y) - v(x,y 0) + v(x,y 0) - v(x0,Y0)]

Since the partial derivatives are continuous, there exist 6, B, Y, 6,

functions of x and y, whose limits as x - x 0, Y " Y0 are 0, such

that

_u + fi)(x_u + oO(y - yo ) + (_x - Xo)f(z) - f(z 0) = (bY

_v + y)(y _ y0) + l(b x + 6)(x - x0)+ i(sy

where the partial derivatives are evaluated at (x0,Y0). Substituting the

Cauchy-Riemann equations, we find



= _U (Z + i _V (Z
f(z) - f(z O) _x " Zo) _x - Zo)

+ (_ + iy)(y - yo ) + (B + iS)(x - x O)

Since

ix- Xol i

Tz - Zo_

and

ly-y0i< i

!z - z01

we see by dividing by z - z O, that

f(z) - f(z O)

z - z0

_V *

+ i _x + 0 (i)

as (x,y) -- (Xo,Yo). Thus

f(z) - f(z O)
limit

z - z0
Z _ Z 0

exists and equals

_u + i_v
5x Bx

*A function is o(I) as (x,y) _ (Xo,Y O) if the limit of that function is O.



Definition:

define

Le__.!t f(z) be analytic in D. Let C be a contour in D. We

f(Z) dz

as

limit

n _

suplz i - Zi+ll -- 0

n

_ f(_j)(zj Zj_l)
j=l

where {zj} divides C

z. and z .
J -- j-I

If

into subarcs, _j is a point of C between

f(z) = u(x,y) + iv(x,y) ,

Z. = Z + "
J j lyj

__j = O.j + iT.j ,

then

n

E f(_i )(z i - zj. I) =
j=l

n

T. (u(_j,Tj) + iv(aj,Tj))(xj + iyj - xj_ I
j=l

- iyj_ I) ,

which consists of four sums of real terms.

The usual additive and multiplicative (by constants) properties for

integrals hold.

*
A contour is a continuous curve consisting of a finite number of arcs. An arc

can be expressed parametrically by two differentiable functions.

k



EXAMPLES:

i. Let C be any path from z = a to z = b. Let f(z) = K, a constant.

Then

n

E

j=l
f(_j)(zj - Zj_l) = K([z I - a] + [z 2 - Zl] + ... + [b - Zn_l])

= K(b- a)

Thus

b Kdz

a

= K(b - a)

Note this is independent of the path C.

2. Let C be any path from z = a to z = b. Let f(z) = z. Then

n

f(_j) (zj Zj_l)
j=l

can be written two ways; first if _j = zj, second if _j = zj_ I. We find

n
2 2

T_ z = ([z I zla ] + [z 2
j-I zj(zj j_l).

- Z2Zl] + ... + [b 2 - bZn_l])

E - zj_ I) =
j=l ZJ-l(ZJ

_ _ 2
([zla a2] + [ZlZ 2 z12] + ... + [bZn_ I - Zn_l])

One half the sum of these is

we find

b 2 2 _ba Since both approach zdz
2 a

b

zdz = (b2 - a2)/2
a

along C,

Again the result is independent of C.
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3. Let C be a circle of radius p.

dz = _2_ _ieied0
C z 0 peie - 2_i

The integral is independent of p. The path of integration is counter-

clockwise.

It can be proved in general that the integral of an analytic function

always exists. (See Knopp, "Theory of Functions", Vol. I).

Theorem 1.3: (Cauchy's Theorem). If f(z) is analytic in a simply connected

region D and C is a simple closed contour in D, then

f(z)dz = 0

C

Proof: We divide the interior of C by series of squares formed by lines

parallel to the real and imaginary axes. D then consists of a number of

squares S of width _ and a number of pieces T formed by parts of
n n n

squares and pieces of the curve C. Then

f(z)dz = 7_ _ f(z)dz + _ _ f(z)dz
C T S

n n

the integration over the interior parts cancelling due to the counter-

clockwise path of integration.

We now assume that for any c > 0, there exists a choice of Sn,

so that

T
n

f(z) - f(z0)

z - z0
f'(z 0) < C

in each S , T . Thus
n n
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f(z) = f(Zo) + f'(Zo)(Z Zo) + N(z)(z - Zo)

where , --,IN(z)l < c in each Sn, T Q

n

In S
n

S
n

f(z)dz =

S
n

f(zo)dZ + _S f'(Zo)(Z" zo)dZ + _S

n n

i
S n n
n

N(z)(z - z0)dz

In T
n

T
n

f(z)dz =
T
n

_<_o_ + S_ _'<Zo)<Z-Zo)_Z+ S_
n n

N(z)(z - z0)dz

I[,T f(z)dzl < 0 + 0 + C_/_ _n[4%n + Cn]

n

where C
n

Thus

is a part of C.

C n n n n

C

where A is the area of a rectangle containing C, L is the length of a

side of the rectangle and ICI is the length of C. Since ¢ is arbitrary,



I0

= 0f(z)dz
C

Supposenow our assumption is not valid. Then there would be a

region S or T where it does not hold. Call it RI. If RI isn n

subdivided in fourths, there would have to be a subregion R2 where it

does not hold, etc. This process could not terminate. Thus there exist

RI _ R2 _ R3 ... In the intersection of RI ... Rn "'" , there is a point

z0 in common. Since f(z) is analytic at z0, for c > 0, there is a _ > 0

such that

f(z) - f(Zo) . f'(Zo) I
z - z0

< C

when Iz- z01 < 6. Surely the sup of Iz- z01 in Rn

than 6. This gives a contradiction.

is ultimately less

Theorem 1.4: (Cauchyls formula). Let f(z) be analytic in and on a simple

closed contour C. Le____tz be an interior point of C. Then

f(z) = _ dw

Proof: Since

f(z) _ rf(w) dw _ 1
2rri JC w- z 2rri

f(z) -f(w) dwW - Z
C

Since

f(z) - f(w)
W - Z



p

ii

is analytic except at w = z, we may replace C by a circle of arbitrarily

small radius p centered at z. Since f(w) is continuous, for arbitrary

> O, there is a 6 > 0 so that if

then

_w- z I = p<8_

If(w) - f(z)1 < c

Thus

If(z) i dwl = I_2_i
C

" f<z) - f<w.) dw 1

izl= p w - z

2_p = e

and the proof is complete.

Remark: If

I
f(z) - 2_i I f(w) dwW - Z

C

is differentiable, then

f'(z) i f f(w)
2_i C (w - z)

dw
2

This can be made rigorous.

f_z + h) - f(z) I _ [ I i
h - 2_i C w - z - h w - z

i

2_i

f(w)

z - h) (w - z)
dw
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Now

2_i C (w- z - h)(w - z) 2_i C

f (w) dw
2

(w - z)

= i _ h f(w) dw
2_i C (w - z - h)(w- z)

Let M = max If(w) l when w is on C. Let 6 = min lw- z 1 when w is

on C. Let Z be the length of C. If lhl < 6, let 61 = min lw - z - h I

when w is on C. Then

i hM_

is an over estimate for the last integral_which approaches 0 as h approaches

0. Thus

limit f(z + h) - f(z)
h

h-0

exists and equals

l f f(w)
24----[C (w- z) 2 dw

Remark: This process can be continued indefinitely.

nl. _ f(w)
f(n) (z) - 2_i C (w - z) n+l dw

Thus an analytic function possesses derivatives of all orders.
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Theorem 1.5: (Taylor's Series). If f(z) is analytic in a region D and

on its boundary C, and z0 is an interior point of D, the_____nf(z) can be

expanded in a power series

co

f(z) = E an(Z - Zo )n
n=O

whose radius of convergence is at least the minimum distance from z0 to C,

and whose coefficients are Riven by

i (n) )
a - , f (z0n n.

Proof: We note that

i i i i

w- z (w- zO) (z- Zo) w- z0
I

z-z 0

w - z0

If Iz - Zol < lw- Zol for all w (on C) then

i I = (z- zo)n

w- z0 z - z0 zo)n+li n=O (w -

w - z0

which converges uniformly. Since, after multiplying this equation by f(w),

integration is possible term by term, we find

oo

i _ dw = _ 2_i n+l - Zo)
f(z) - 2_i C w- z n=O C (w- Zo)

n n

E ___.,f(n)(zO)(Z - zO) = _ a (z -n Zo)
n=O n=O
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Theorem 1.6: Suppose

co

f(z) = _i. an(Z - z0 )n
n=O

and

QO

g(z) = E bn(Z - z0)n
n=O

have radius of convergence Pl and P2' respectively. If f(z) and g(z)

coincide on an infinite number of points including z0 as a limit in a

region around z0 within both the domains of convergence Iz - z01 < PI'

Iz - z01 < P2' then f(z) = g(z).

Proof: Letting z approach z0, we see a 0 = b 0. Then

E a (z - z0 )n-I = E b (z - z0 )n-In n
n=l n=l

on an infinite set with limit z0. Letting z _ z0 on those points shows

aI = b I. Ultimately considering

O0

n-m n-m
T. an(Z - z0) = _ bn(Z - z0)

n=m n=m

shows a = b .
m m

Thus f(z) = g(z).

Definition: Let f(z) be analytic in a region D except at a point z0

where f(z) is undefined. If there exists an integer m so that (z - zo)m f(z)

can be extended analytically but (z z0 )m-I f(z) cannot_ then f(z) has a

pole of order m at z0.
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Note

oo
m

(z - z0) f(z) = 'E
n=O

an(Z - z0)n

So

)n-m _ _n
f(z) = E an(Z - z0 = E +

n=0 n=l (z - z0)n

oo

_n(Z - z0)n
n=O

Definition: If f(z) is analytic except for poles, then f(z) is a

meromorphic function.

Definition: If

co

f(z) = T. an(Z - z0)n
n =-m

in a neighborhood of z0, the residue of f(z) at z0 i__{sa_l.

Theorem 1.7: IResidue Theorem). If f(z) is analytic in and on a simple

closed contour C except for a finite number of singularities zI ... zn

with residues R I ... Rn then

n

12_i _ f(z)dz = T R.
]-- C I

Proof: We choose circles C. centered at z. with radii ¢ sufficiently
] ]

small so that they don't overlap. These circles are connected to C by simple

non-intersecting arcs A..l If the contour defined by C, {Cj] and the arcs

{Aj} traversed in both directions is considered, by Cauchy's theorem the

integral of f(z) over this path is 0. The integrals along {Aj] cancel.
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The integrals about each C. yields 2_i Rj_ and the result follows.J

Theorem 1.8: (Argument Principle). Let f(z) be analytic in and on a

simple closed contour C except for a finite number of poles within C. Let

N be the number of zeros of f(z) within C (a zero of order m counted

m times). Let P be the number of poles within C (a pole of order m

counted m times). If f(z) is not zero on C and A C arg f(z) denotes

the change in the argument of f(z) as z varies over C, then

i

2-_ AC arg f(z) = N- P

Proof: We write

N P

f(z) = g(z) Ill(z - aj) / _i (z - bj)

where g(z) is analytic and non-zero in and on C, {aj] are the zeros of

f(z) in C and {bj] are the poles of f(z) in C.

We consider

l f f'(Z)dz2_i f (z)
C

N P i g'(zJ= z 1 z +
f(z) j=l z a.j j=l z - b.j g(z)

Integrating around C we find the integral equal to N - P since the

residues in the sums are all i and g'(z)/g(z) is analytic. Now

f'(z)If(z) =
d

dz (log f(z)) =
-- d
d log If(z)l + i _z arg f(z)
dz

Since If(z)l returns to the original value upon traversing C, we find the
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integral is

i
2--_ AC arg f(z)

and the result follows.

Theorem 1.9: (Rouch_'s Theorem). If f(z) and g(z) are analytic in and

on a simple closed contour C and If(z)l > Ig(z)l on C, then

F(z) = f(z) + g(z) and f(z) have the same number of zeros in C.

Proof: Write

F(z) = f(z) (i + _(z)
f(z) )

Since

II + f(z)l _ i- If(z)l > 0

on C, A arg F(z) = A arg f(z).
C C

g(z) always remains in quadrants([i + f(z) ]

i and 4. Thus it contributes nothing to AC arg F(z)). Since neither f(z)

or F(z) has poles, the argument principle shows that these functions have

the same number of zeros in C.

Theorem i.i0: (Hurwitz's Theorem). Let f (z) be a sequence of analyticn

functions convergin_ uniformly to the analytic function f(z) in a re_ion

bounded by a simple closed contour. Let z0 be an interior point. If z0

is a limit point of the zeros of the functions fn(Z) the_____nnz0 is a zero of

f(z). If z0 is an m-fold zero of f(z), then for every small region

containin$ z0, there is an N so that if n > N, f (z) has precisely mn

zeros in that small region.
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Proof: Choose 6 > O. There exists an N such that if n > N, then

Ifn(Z)- f(z) I < 6/3 for all z in C. Choose 6 > 0 so that

If(z) - f(Zo) I < 6/3 when Iz - Zol < 6. There is an N I such that if

n > hi, then fn(Z) has a zero zI such that IZl - Zol < 6. Finally in

Iz - Zol < 6 there is a 61 such that Ifn(z) - fn(Zl)l < c/3 when

Iz-Zll< 61

Thus for all n > N and N I we have

If(Zo) I _ If(z O) - f(z)l

+ If(z) - fn(Z)l

+ If (z) f )In n(Zl

+ If )ln(Zl

< 613 + 6/3 + 613 + 0

when Iz - Zll < 61 and Iz - Zol < 6. Thus f(Zo) = O.

To prove the second half of the theorem we consider

f(z) = f (z) + If(z) - f (z)]
n n

on a circle with center z and radius p _where p is small enough so that
O

f(z) is not zero in and on the circle except at z . Since f (z) converges
o n

uniformly to f(z), we choose n sufficiently large to ensure

If(z) I > If(z) - f (z)l on the circle. The result follows from Rouche's
n

theorem.
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n
i. Show z

z

, e , sin z, cos z are analytic functions.

2. Show I _ f(z) dz I < M_) where If(z)l < M and _ is the length of C.
C

3. Prove Morera's Theorem: If f(z) is continuous on a simply connected

r

region D and _ f(z) dz = 0 for every simple closed contour C in
C

D, then f(z) is analytic in D.

4. Show that

CO

n
7. a z

n
1

represents an analytic function within its region of convergence.

5. Show that if

Oo

n
f(z) = T. a z

n
1

in a circle of radius p with If(z)l < M on the circle, then

fan I < M/p n. (Cauchy's Inequality.)

6. Prove Liouvill_s Theorem: An analytic function which is bounded for all

z is a constant.

7. Prove the Fundamental Theorem of Algebra: If f(z) is a polynomial of

degree n, then f(z) has n zeros.

8. Show that if f(z) is analytic in an annular region Pl < Iz - z01 < P2

and on the boundary, then

f(z) =

co

n
r a (z -n z0)

n=-=o
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where

a
n 2_i

f(z)

_IZ-Zol = Pl (z zo)n+l

dz if n<O

a
n 2_i f ,(z)n+l

IZ-Zol = P2 (z - Zo)

dz if n>O

(Laurent Expansion).

9. Evaluate the following integrals by contour integration:

co Oo oo

dx _ sin x dx ' ] cos x4 ' x 2 dx ,
o x +1 o o l+x

f
0

2
sin x dx

2
X
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II. The Laplace Transform

Wewill consider those functions f(t) which are piecewise continuous on
-o0t

[0,_) and which for somereal o0, e f(t) is absolutely integrable. For

-stfall s = o + iT with o _ o0, e (t) is absolutely integrable

Definition: The Laplace transform of f(t), denoted by F(s) o/_r_f(s),
• i , ,

is _iven by

oo

-StF(s) = e
o

f(t) dt

for all s = _ + iT with _ _ _0"

Theorem 2.1: If f and g have Laplace transforms _f and _g ,

respectively, then for all complex numbers a and b, af + bg has a

Laplace transform and

c_(af + bg) = a_f + b_g

Note that if f has a Laplace transform for Re(s) _ °O and g has

a Laplace transform for Re(s) _ °i' then both f and g will have Laplace transforms

for Re(s) _ Max (_o,_i).

Theorem 2.2: If f and f' have Laplace transforms , then
i, ii

') = s_f- f(O)

If f, f, ... f(n) have Laplace transforms, then

_(f (n)) = sn_f _

n-1

Y. f(k)(0) sn'l-k

k=0

The proof is by induction. When n = i, the result follows upon integration

by parts. For arbitrary n,
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= e-Stf (n) (t)dt_(f (n)) _=
o

-stf (n-l) _ _ e-Stf(n-= e (t) I + i) (t)dt

O o

n-2 n-2-k_ sis n- i_ f]
. f(n-l) (0) - [k=0 f(k)

s E (0)s +

n-i

n_ f(k) n-l-k= s f - E (0)s
k=0

Theorem 2.3: Let

f(-n)

tn t3 t 2

f(tl)dtldt2dt 3 ... dtn

then

_(f(-n)) = _(f)/s n +

n-I

_. f(k-n) (0)/sk+l

k=0

Proof: Replace f in Theorem 2.2 by f(-n), multiply by s-n

_(f(-n)).

To show that if f has a Laplace transform so does f(-l)

straight forward upon integration by parts. (See Kaplan [2]).

and solve for

is fairly

Theorem 2.4: If f(t) = 0 whe____nt < 0, then

S(f(t - a_ e f
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Proof :

_ e-Stf(t.a)dt _ -s(a+u) -as _== e f(u)du = e e-SUf(u)du
O -a o

Theorem 2.5: If f has a Laplace transform for Re(s) > °O an__dd f(t) = 0

atfif t < 0, then e has a Laplace transform for Re(s) > c;0 + Re(a) and

atf)(s) = _f(s - a)

Proof:

= -Steat f(eat f) (s) = e (t)dt

O

= -(s-a)t= e f(t)dt

O

= _f(s - a)

-_.The°rem 2.6: __If f has a Laplace transform for Re(s) _ c O , __then

tnf, n = 1,2,3, ... has a Laplace transform for Re(s) > o 0 and

_(tnf) (s) = (-i) n d--n_f(s)
ds n

Proof: Let Re(s) = a. Choose _ = _0 + _"

_ 0 tne-_te'_ttnlf(t)Idt = e If(t)Idt < co
O O

which shows _(tnf)(s) exists. The result is then formally achieved by

differentiation of _f(s).
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Theorem 2._7: (Initial value Theorem). If If(t)l < ke at for some real

values k > 0 and a > 0, and

then

limit f(t) = f(0) ,

t-0

limit s _f(s) = f(0)

S _ _

Proof: We consider

CO

-stI S( ) -- S e
o

If(t) - f(0)]dt

We restrict s so that s > a, let st = u and eliminate t in l(s).

Thus

l(s) = _ e"u If(u/s) - f(0)]du
o

Choose c > 0. If u0 is sufficiently large, then

_ e'U(l-a/S)du < c/4k .
u
o

Then

CO CO

auJs1 e -u [f(uls) - f(0)]du I < e-U2k e
u u
o o

du < C/2

We now choose s such that if u is in [0,u0]

If(u/s) - f(0) l < C/2u 0
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Then

u u
o o

I _ e-U[f(u/s) f(0)]dul < _ e-U(c/2Uo )du < C/2
o o

Thus if s is sufficiently large, ll(s)l < c. Since

_ -stfs e (0)at = f(0) ,

o

we have shown

limit s_f(s) = f(0)

S _ _

Theorem 2.8: (Final value theorem). If If(t)l < k for some real value

k > 0 and

limit f(t) = f(=)

t_=

exists_ then

limit s_ f(s) = f(o_)
s -_0

Proof: We consider

If st = u, then

CO

e-St[J(s) = s f(t) - f(==)]dt

O

CO

J(s) = _ e-U[f(u/s) - f(=)]du
O

Choose ¢ > 0. If u0 is small enough so that

-u
O

i - e < ¢/2[k + If(_)l] ,

L
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then

u

o

u
o

e-U[f(u/s) - f(=)]du I <
o

e-U[k + If(=)l]du ,

-u

< (i - e °)[k + If(=)l ]

< ¢/2

u

Now we choose s small enough so that If(u/s) - f(=)l < ¢/2 e o

co _ U

I e-U[f(u/s)- f(=)]du I < e e (C/2)du = C/2

u u
o o

Then

Thus if s is sufficiently small, IJ(s) I < c. Since

_= -stf(=)dts e = f(_)

o

we have shown

limit so_ f(s ) = f(_)
s-_ 0

Theorem 2.9: (Convolution theorem). If f(t) an___dg(t) have Laplace trans-

forms F(s) and G(s) respectively_ then

F(s) G(s) _( _t• = f(_)g(t - _)d_dt)

O

Proof :

co

e_St
o

t CO OO

f(_)g(_- t)d_dt = _ _ f(_)g(t - _)e-S_e-S(t-_)dtd_ ,
o o

GO Oo

= J e-S_f(_) _ g(u)e'SUdud_ ,
o o

= F(s) • G(s)
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Theorem 2.10: (The Inversion theorem). Let f(t) be piecewise smooth (f

and f' be continuous except for a finite number of finite jumps) with

Laplace transform

oo

F(s) -- _ e'Stf(t)dt , Re(s) > G 0
o

Then

½[f(t + 0) + f(t - 0)]

oo

m

2_
--CO

F(C + i_)e(C+i_)td_

for all c > G o •

Proof:

F(o + i_)e(_+iw)td00 I

2_i +in• F(s) estds

i _c+in _= -SU2_i o+in o e f(u)du eStds

0o _c+in -s (u-t)i f (u) e dsdu

2_i o c-ln

CO

i _ f(u)e-_(u-t) sin n(u - t) duu - t
o

I I f(t + v)e -cv SinvnV dv
-t

The last integral is a well known Dirichlet integral whose limit as n - = is

½[f(t + 0) + f(t - 0)].



29

EXAMPLES:Let f(t) = 0 if t < 0.

i. f(t) = i, t > 0
at

2. f(t) = e , t > 0

3. f(t) = t n, t > 0

4. f(t) = tneat t > 0

5. f(t) = cos at, t > 0

6. f(t) = sin at, t > 0

F(s) = l/s, Re(s) > 0.

F(s) = I/(s - a), Re(s - a) > 0.

F(s) = n_/sn+l, Re(s) > 0.

F(s) = n_/(s a)n+l, Re(s-a) > O.

F(s) = s/(s 2 + a2), Re(s) > Jlm(a)l.

F(s) = I/(s 2 + a2), Re(s) > llm(a) l.

See tables for Laplace transforms and tables for inverse transforms.

EXAMPLES: Evaluation of the inversion formula by contour integration.

i. Let

F(s) =
(s - a)(s - b)

If F is expanded by partial fractions,

F(s) = _is a s a - b

We choose c O greater than a or b and compute

i _ F(s)etSds
2_i C

n

where Cn is the contour consisting of the line segment from G0 - in to

G 0 + in and the semicircle to the left of the segment with center at G 0 + i0

and radius n. For large n both a and b will be enclosed, so

12hi _C F(s)etSds - a "ib [eat ebt]

n
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As n increases both the integrals

12_i _ [F(s)/(s - a)]ds

and

2_---T [F(s)/(s - b)]ds

taken on the semicircle approach 0. Thus

f(t) - _ [e at - ebt]
a b

2. Let

i
F(s) =

(s a) n+l

We consider the same contour as in example i with o 0 > a

st

f(t) = i _ e
2_i C (s - a)n+l

n

as

This is the formula for

I dn zt

n' H e
• dz

z=a

at
which is - -"-(tn/n:) e Again as n -_ =, the integral along the semicircle

vanishes•

The inversion of any rational function may be computed by this method.

Note that in both examples if t < O, the contour must be closed to the

right and the integrals give 0.
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EXERCISES

i. Give another proof of the initial and final value theorems when f'

and _(f') exist.

, Give a direct proof that

t f(t - _)g(_)d_

t

= _ f(T)g(t - 7)d7
O

when f(t) and g(t) are zero for t < 0.

3. Prove 2 using the Laplace transform. (Assume that if __f = _g,

then f = g.)
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III. Linear Differential Equations, Stability

Let A(t) be an n by n matrix of continuous functions defined for

all t _ t o. Let Y(t) be an n by i matrix, Y0 be an n by I

matrix of constants and B(t) be an n by i matrix of functions which are

continuous for all t m tO.

Theorem 3.1: (The Existence Theorem). The problem

Y' = A(t) + B(t) ,

Y(to) = Y0

has a unique solution Y(t) whose elements are continuously differentiable

for all t m to .

Proof: Let us define a sequence of n by i matrices by

t

Ym (t) = YO + _ [A(t)Ym-l(t) + B(t)]dt
t
O

with Y0(t) = Y0" The elements of this sequence satisfies

Y'(t)m = A(t)Ym-I(t) + B(t), Ym(t0 ) = Y0" Further

Ym(t) = Y0 + (YI (t) - Y0 ) + "'" + (Ym (t) - Ym-I (t))

In any finite interval [t0,T ] each element is uniformly bounded since A(t)

and B(t) have continuous functions as components. Since

Y'(t)m - Y'm-I (t) = A(t)(Ym_l(t ) - Ym_2(t)), we have by induction that each

t0) Ira-i/(m-i )element of Ym(t) - Ym_l(t) is less than k[n_(T - ! where k

is a bound for the components of YI (t) - Y0 and _ is a bound for the

components of A(t). Since the series
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k[n_(T - to)]m/m_
m=O

converges to k exp [n_(T - to) ], the sequence Ym(t) converges uniformly

for all t to a function Y(t) which is itself continuous. Since the

convergence is uniform

t

Y(t) = Y0 + _ [A(t)Y(t) + B(t)]dt
t
O

The right side is differentiable, thus Y(t) is, and

Y'(t) -- A(t)Y(t) + B(t)

Y(t0) = Y0

To show that Y(t) is unique, we suppose there exist Y(t) and Y (t)

satisfying the differential equation and the boundary condition. Then

U(t) = Y(t) - Y (t) satisfies

U'(t) = A(t)U(t) ,

U(t0) = 0

We choose an arbitrary c > 0 and require It -t01 < c. Then since

U'(t) = A(t)U(t), if m denotes the largest component of U(t), every

component u'(t) of U'(t) satisfies

lu' (t)l _ n0_n ,

Upon integration

_u(t) I _ n_nlt- tol _ n_mc
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Since _u(t)l _ m,

m(l - n_¢) < 0

i
But since ¢ is arbitrary, C < -- yields a contradiction unless m = O.

n_

Thus U(t) = 0_ and Y(t) is unique.

The equation Y' = A(t)Y + B(t) is called a linear equation. If

B(t) = O, the equation is homogeneous. If B(t) # 05 it is non-

homogeneous. Note that the nth order equation

ao(t)y(n) + ... + a (t)y = f(t)n

Y(t0) = d0 .... Y(n-l)(t0) = _n-i '

can be put in matrix form. Let us write

y' = 0 y + Yl ............ + 0

' = 0 y + Oy I + Y2 + 0_Yl ........

Yn-2' = 0y + Oy I + "'" + Yn-i + 0

a (t) (t) al(t ), n an-i

= - Y a0(t ) YlYn-i ao(t ) a0(t ) Yn-i + b(t)a0(t)

When ai(t ) are continuous over an interval [a,b] and a0(t ) # O, if

we let
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y =

Y

Yn-i

A(t)

010 .0

'O01 .0

an(t) al(t)

a0(t) a0(t)

, B(t) =

0

a0(t)

Y0

d 0

_n-i

then the nth order equation with boundary conditions at

form of a matrix equation.

If A(t) = A, a constant matrix, the solution to

tO is put in the

Y' = AY + B(t)

Y(t0) = Y0

is quite simple to find. Let us denote by

At r . . n
e = _ LAn/n_ Jt

n=0

This series converges uniformly for all bounded t. It is easy to show that

-At At At -At
e e = e e = I, the identity matrix, as well as other properties

usually associated with the ordinary exponential function.

-At
Y' - AY = B(t) by e yields

Now, multiplying
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-Aty, = ,e - Ae-Aty e-AtB(t)

-At B[e-Aty] ' = e (t)

Integrating from t O to t,

-Aty -At0 _t _A_Be (t) - Y0e = e (_)d_
t
O

and

A(t-t0) _t +A(t-TY(t) = e Y0 + e )B(_)d_
t
o

Note that the integral is a convolution.

If the nth order equation

a0y(n) + ... + an y = f(t) ,

(n-l)
y(0) = if0 "'" y (0) = ffn-i '

where a. are constants, a # 0 is considered, we find
x o

y

n t

CiYi(t ) + _ G(t- T)f(T)d_
i=l o

is a solution where Yi(t) are independent solutions to the homogeneous

problem, C. are appropriate coefficients and G(t - _) is the appropriate
i

A(t-_)
component of e G(t - _) is called the Green's function associated

with the nth order problem.

It is easy to show that tm-1 rt aoy(n)e is a solution of + --. + a y = 0
n

n
if and only if r is at least an m-fold zero of F(z) = aOz + ... + a = O.n

Further the collection [tm-lert} where r ranges over the zeros of F(z)



38

and m ranges from I to the multiplicity of the zero

independent set of solutions. Thus

y _.

r form a linearly

where again

If

then

and

Thu s

If s

Since

No. of zeros Mult. of rk " i rl t t

T. _ CjktJ- e k + _ G(t - _)f(_)d_ ,
k=l j=l o

Cjk are the appropriate coefficients.

Linear systems in vector notation can be solved by the Laplace transform.

Y' = AY + B(t), Y(0) = 0

_(Y') = s_(Y) - Y(0)

s _(Y) - Y(0> = A_Y +_B

[Is - AIrY = Y(O) +_B

is larger than the eigenvalues of A, [Is - A] -I exists_and

_Y = [Is - A]-Iy(0) + [is - A]-I_B

_(e At) _== -SteAtdt _
= e = e-[ Is-A]tdt

o o

= [Is A] -I

_t eA(t__)B(_)d _y = eAty 0f( ) +

O

the same formula as before.

The nth order differential equation with constant coefficients can also
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be solved directly using the Laplace transform. Weconsider

(n) + ... a y = f(t) ,a0Y n

y(0) = _0' "'" Y(n'l)(0) = _n-i '

where f(t) possesses a Laplace transform _f(s). Taking the Laplace

transform of both sides,

n i-I
_ an_i _si ]y - _ _ksi-l-k = f(s)

i=0 k=0

If
n

i
F(z) = r a .z ,

n-i
i=0

n i-i

F(s)_y = _f(s) + 5]. _ an_i_k s
i=0 k--0

i-l-k

n i-i

..y = f(s) + E T a IF(s)
i=0 k=0 n- l_K s

4_1[ 4 n i-I i_l_k/F ]y = f(s)/F(s) + E ? a i_k s (s)
i=0 k=0 n-

Z-I ] E;y = (s)/F(s) + _-I E a
i=0 k=0 n-i_k s

t

If we let G(t) have Laplace transform i/F(s), y -- I G(t _)f(t)dt +

. r.t o

terms having the appearance C..tJe i where j = 0,i_... m. - i and r.
lJ l l

is an m. fold root of F(z). The coefficients are chosen so that the initial
i

conditions are satisfied. If _0 = 0, ... an_ I = 0 then
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,t
y=j

O

G(t - T)f(T)d_

Thus the Green's function previously mentioned has as its Laplace transform

i/F(s).

Definition: A solution

of

I Yl (t)_

Y(t) =

Yn(t) I

Y' = A(t)Y + B(t)

is said to be stable if for every c > 0 there is a 6 = 8(e) > 0 such

that if any other solution

x(t)

I xl(t) 1

Xn(t)

satisfies

sup Ixi(t0)
i=l,...n

Yi(to) l _ 6 ,

then

sup Ixi(t) - Yi(t) l _ ¢
i=l,...n

for t > t0.



41

If

limit sup ,Ixi(t) - Yi(t)l, = 0
t _ _ i=l,...n

Y(t) is asymptotically stable.

If

Ixi(t) - Yi(t) l

is merely bounded, as t _ =, Y(t) is marginally stable.

Theorem 3.2: The solutions of the linear differential equation with constant

coefficients

Y' = AY + B(t)

are stable if and only if the zeros of

F(z) = llz- A I

are either simple with non-positive real parts or have nesative real parts.

The solutions are asymptotically stable if and only if the zeros of

F(z) have nesative real parts.

Proof: The difference between any two solutions will be of the form eAtc

At
which will always behave only when e does.

If the zeros of F(z) are simple, there exists a matrix T so that

A 11°lT T -I
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n

where {hi] I are the zeros of F(z). Then

which is bounded if and only if the real parts of the zeros h i are non-

positive, which approaches zero if and only if the real parts are negative.

If the zeros of F(z) are not simple,there exist matrices T, D and

N so that

A = T[D + NIT -I

where

D _--"

h I

h
n

h
n

N satisfies Nm = 0 for some m, and ND = DN. Then

At
e = T

m

hit
e

hit
e

h t
n

e

h t
n

e

eNtT-i
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where

Nt Nm-lt m-I
e = I + Nt + ... +

(m - i)_

At
Clearly e remains bounded and approaches zero if and only if the real

n

parts of the zeros [Xi] 1 have negative real parts.

Theorem 3.3: The solutions of the linear differential equation with constant

coefficients

a0y(n) + ..- a y = f(t)n

are stable if and only if the zeros of

F(z) = a zn + .." + a
o n

are either simple with non-positive real parts or have negative real parts.

The solutions are asymptotically stable if and only if the zeros of

F(z) all have nesative real parts.

Proof:

m-i rt
terms are of the form t e which is bounded only when m =

Re(r) _ 0 or when Re(r) < 0, which approaches 0 as t _

Re(r) < O.

Note that stability is independent of the initial conditions at

in each case.

Clearly the difference between any two solutions will be a sum whose

i,

only when

t = 0

EXAMPLES :

i. Solution of xy" + y' = x by using the Laplace Transform.

The transformed equation is

d - y' sF (0) = s-2(-I) _s [s2F - sy(0) (0)] + - y
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where F = _y. Simplifying, we find

-3
sF' +F = - s

2s2 -isF = ( ) + C ,

F = (2s3) "I + Cs-I ,

Y = %x2 + C

The general solution is y -- CI + C2 in x + _ x2. Since In x does not

possess a Laplace transform, it is ignored by this method.

2. Solution of y" - 3y' + 2y = f(t) by using the Laplace transform.

The transformed equation is

[s2F - sy(0) - y'(0)] - 3[sF - y(0)] + 2IF] = _f(s) ,

Is 2 - 3s + 2IF = _f(s) + s[y(0)] + [y'(O) - 3y(0)]

Dividing and using a partial fraction expansion,

_rn_
S - 1

+ (-y(0) + y'(0))
S - 2

y = [2y(0) - y'(0)]e t + [-y(O) + y'(0)]e 2t

t 2t
- e * f + e * f ,

y y(0)[2et 2t] y, .= - e + (0)[e 2t et]

_t e _t- t'Uf(u)du + e2(t'u) f(u)du

o O
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3. The approximation procedure for

y' = F(x) y , y(0) = Y0

where F(x) is continuous.

We have

Y0 (x) = Y0

x

Yl (x) = Y0 + _ F(_)Y0d_ '
o

yolk+ix_<_]
o

x

y_x_=yo+7 _yo[_+__-_0_
o o

yoE_ fx= + F(_)d_ + (fx F(g)d_)2/2_
o o

n x

Yn_X_: Y0[_ _f_"_ _]
j=O o

As n - _, Yn(X) _ y(x)_ where

y(x) = Y0 exp E _x F(_)d_
o
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EXERCISES

2t
i. Solve y" -4y' + 4y = e by the Laplace transform method.

2. Find the matrix T so that

IiI12 i 1 0

= T

I 2 X2

for some X X Use T to solve
I' 2"

T-I

x{ = 2x I + x2 + bl(t )

x_ = x I + 2x 2 + b2(t )

Xl(0) = 1

x2(0 ) = 0

3. If y' = 2ty, y(O) = a, find the nth approximation of the

solution y as given by the procedure in theorem I.

4. Show that the characteristic equation for the nth order equation

remains unchanged if the nth order equation is put into matrix form.
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IV. Bode Diagrams

4.1: The following notation is sometimes convenient. Let L and M be

linear differential operators with constant coefficients with the degree of

L greater than or equal to the degree of M, and Ly = Mf with f

given. Then f is called an input and y an output. Ly = Mf is

transformed by the Laplace transform into

g(s)O = h(s)l + k(s)

where g(s), h(s) and k(s) are polynomials with degree g(s) -- order L,

degree h(s) = order M, degree k(s) < degree g(s), I = _f,

0 -- _y.

If the initial conditions for y and f are zero,

0 = [h(s)/g(s)]l

This may be symbolically represented by a "black" box with transfer function

F(s) = [h(s)/g(s)]

That is the input I is transformed by the transfer function F into the

output O.

4.2: Bode Diasrams. A Bode diagram is the graph of 20 loglo F(s) with

s = i_ versus loglo(_ ) • That is, the graphs of 20 lOglo IF(iw) I and

arg F(iw) are drawn with respect to loglo(_ ). The graphs are easily

constructed on log-log or semi-log paper.

Bode diagrams have various uses. Among them are

i. If F is unknown 9 it can be found experimentally by the following procedure.



49

q_
Let f(t) = Ae iwt be induced by some mechanical means. Then

-i
I = A(s - iW) ,

and

-i
0 = AF(s)(s - iw)

If initial conditions are ignored and a steady state condition is reached,

then

y = AF(iw)e i_t

and

F(iw) = y(t)/f(t)

As w varies from 0 to =, a graph of 20 lOgl0 IF(iW) l and

arg F(iw) can be found by considering ly(t)/f(t)l and arg y(t) - arg f(t).

From this F can be determined.

iWt
2. If f(t) = e is induced either experimentally or mathematically and

a Bode diagram is drawn, data can be found from it to construct the graphs

necessary for some of the stability criteria to follow, e.g. the Nyquist and

Michailov criteria.

Definition: The amplitude of a quantity A in decibels is

Adb = 20 lOgl0 A

Definition: .An octave_ associated with a variable w_ is the interval in

which w doubles itself.

* iwt
The actual input may be the real or imaginary part of e

We are only interested in the fact that it is sinusoidal.
or any combination.
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Then

lY(t)/f(t)Id b = 20 io_0 lh(iw)l - 20 loglo Ig(iw)l

The graph of ly(t)/f(t)Idb will consist of the sumand difference of the

graphs of the individual factors of the form 20 lOgl0 liw - WOl and

20 loglo l-w 2 + 2i6_00 + w021 coming from h(iw) and g(iw). We discuss

these components separately. Having learned how the components behave, the

graph of F is easily constructed_or the form of F can be easily

approximated.

Theorem 4.2.1: Let (z - W0) be an arbitrary factor of h(z) or g(z)

with real _0" Then 20 lOgl0 li_ - w01 becomes asymptotic to

20 lOgl0 lw01 as w -_ 0, and becomes asymptotic to 20 lOgl0 IWl as

--) CO

Proof : Let

f = 20 lOgl0 liW - WOI - 20 iOglo IWOI

Then

f = 20 loglo ([_/w0 ]2 + I)½

and

limit f = 0

W-0

Let

f = 20 lOgl0 liw- W01 - 20 loglo IU01
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Then

and

f = 20 lOgl0 ([_0/_32 + i)½_

limit f = 0

Theorem 4.2.2:

approaches 0

The rate of change of 20 lOgl0 li_ - w01 per octave

as w _ O, and approaches 20 loglo 2 _ 6 as w - _.

Proof: Let f = 20 loglo li_ - W01. Then the rate of change per octave is

given by df/d(log2_). Differentiating, we have

df 20 w(w 2 + w02) -Id--_ = lOgl0 e

d log 2 _ i

- log 2 edw w

Thus

df = 20 loglo 2/[1 + (w0/w) 2]
d(log2_)

The results follow by taking limits.

Definition: A frequency W 0 at which the asymptotes of a given factor

intersect is called a corner frequency.

Theorem 4.2.3: Le..__tz2 + 26zw 0 + WO 2 be an arbitrary factor of

h(z) with complex zeros_ i.e., 62 < i, _0 # 0, then

g(z) or

20 lOgl0 I-_ 2 + 2i6_ 0 + W021

becomes asymptotic to 20 lOgl0 I_021 as _ _ 0 and becomes asymptotic to
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20 loglo IW21 as W-_ oo.

The proof is similar to theorem I.

Theorem 4.2.4: The rate of change of

20 lOgl0 l-w 2 + 2i8_ 0 + W021

_er octave approaches zero as

as w - _.

w - 0 _ and approaches 40 lOgl0 2 _ 12

The proof is similar to that of theorem 2.

Theorem 4.2.5: When 0 _ 161 < _/2,

20 lOgl0 I-w2 + 2i60_00 + w021

has a minimum at w = Wo(l - 262) ½ . The value of

20 lOgl0 l-w 2 + 2i6_ 0 + w021

at the minimum is

When 161 _ V_/2,

20 lOgl0 (48211- 82]) ½

2o loglo 2 + 2i6WW0 + W021

has a minimum only at zero.

Proof: Differentiation yields
I

at a critical point.

W(W 2 + W02126 2 - 1]) = 0

If the function has a minimum not at w = 0, then
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m = w0(l - 282)½ which is real if 0 _ _/2. The second derivative being

positive confirms that it is a minimum. If 181 _ _/2, the only critical

point is at w = 0. Since the first derivative is positive for w > O,

= 0 is a minimum.

Theorem4.2.6: The

limit arg (iw - w0)
u0-_O

is 0, _ or _ depending upon whether _0 is negative_ zero or positive.

The

limit arg (iw - WO)

?I

is _ for all w 0.

Proof: These results follow by looking at the vector I-w0] + i[w].

Theorem 4.2.7: If _0 # O, the rate of change of arg (i_ - _0) per octave

approaches 0 as _ approaches 0 or _.

-i

Proof: Let f = arg (i_- _0 ) = tan (-_/WO). Then

df " _0

dw 2 2 '

w + _0

d log 2 _ i

= _ log 2 e ,

and

df = i I _0 1d log 2 _ log 2 e W2 + WO 2

which approaches zero as w _ 0 or =.
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Theorem 4.2.8: If 18 1 < i, W 0 > O,

limit arg (-w 2 + 2i80J_0 + w0 2) = 0 ,
00-0

limit arg (-w 2 + 2i6_I_0 + W0 2) =

0O -_ oo

Proof: These results follow from looking at the vector

V = [0002 - W 2] + i[26ww0]

Theorem 4.2.9: The rate of change of arg (_002 + 2i_0j_0 + W0 2) per octave

approaches 0 as 00 approaches 0 o_.__=. For fixed w, the rate of

change per octave approaches 0 as 8 approaches 0 when 00 # w 0,

approaches = as 8 approaches 0 when _ = w0, approaches 0 as 8

approaches =.

Proof: If f = arg (-w 2 + 2i8_ 0 + w0 2) then

df 28w030(002 + WO 2)

d(log 2 w) (_ 2 + 0002)2 + (2_0_00)2

I

log 2 e

The results follow by taking limits.
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EXERCISES

i. Solve y" = f' - f by the Laplace Transform. Showthat y depends

upon f(0).

2. Draw a Bode diagram for

°

F(s) = (s2 - 3s + 2)/(s 2 - 4s + 8)(s - i)

Draw a graph of F(s) = (s2 - 3s + 2)/(s 2 - 4s + 8)(s + i) as s

varies from 0 to i= by taking the data from the Bode diagrams in

problem 2.
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V. Stability Techniques for Linear Systems

5.1: It has already been shown that a linear differential system with

constant coefficients is stable only when the roots of the characteristic

equation do not lie in the right half plane. In practice, roots upon the

imaginary axis do not occur_so that it is desirable to know when the roots

all lie in the left half plane. There are various techniques for determining

this. We examine them. Let the characteristic equation in question be

n n-i
F(z) = aOz + alz + ... + a = 0n

Theorem 5.1.1: All of the zeros of

n

F(z) = a0z + ..- + an

lie inside a circle of radius p + M + i centered at the origin where

M = sup {ai/ao]
i=l, ...n

Proof: If Izl > p, then

nIzl n _,, lai/a011zl n-i
i-i

n

Izln-M
i=l

Iz n-i

= Izl n M(Izl n - l)/(Iz I - i)

Izln[Izl - i - M] + M

> 0
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Theorem 5.1.2: Let

n

F(z) = a0z + ''" + an

p mo

a0 II (z - zj) j
j=l

where

P

m. = n

j=l ]

and a0 # 0,

F6(z ) = a0zn + (a I + Cl)Z n-I + ... + (an + en) ,

Ck be a circle centered at zk with radius rk satisfying

0 < rk < min .IZk - zjl.
j=l,...n

j#k

then there exists an c > 0 such that if Icil < c fo_._!ri = i, ... n, then

Ck contains precisely mk zeros of Fe(z).

Proof: Note that on Ck_ F(z) is not zero. Thus there exists Mk > 0 so

that IF(z)l > M k on Ck. Further,on Ck,

n-i + + Cn IIF (z) - F(z) I = I¢i z -''
g

n-I
< oil +p + ... +p ]

where p = rk + IZkl. Thus if

C < Mk/[1 + "'" + pn-l] ,
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IF(z)l > IF (z) - F(z)l on Ck, and the result follows by Rouch_'s

Theorem.

This theorem shows that the roots of a polynomial are in a very general

way continuous functions of the coefficients.

Theorem 5.1.3: Le_._!tL be a line on which F(z) has no zeros, _L arg F(z)

be the change in arg F(z) as z varies along L in a specific direction,

p be the number of zeros of F(z) on the right of L and q be the number

of zeros of F(z) on the left of L. Then

and

i

= - A L arg F(z) ,q - p

I
p = ½ In - _-- AL arg F(z)] ,

I AL arg F(z)]q = ½In+

Proof: As z varies along L for each zero z. on the right, arg (z - zj)J

has a net decrease of _, while a zero on the left has a net increase of v.

The increase in arg F(z) is the sum of all these. Thus

i

q - p - n AL arg F(z)

Using this with q + p = n completes the proof.

Theorem 5.1.4: If the zeros of
I| I

n

F(z) = aoZ + ''' + an

have only negative real parts and a0,a I, ... an

all have the same sign.a0 ,a I , •.. an

are all real_ then
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Proof: Suppose a0 > 0. Then

F(z) = aoll(z + zj) _((z + x.)2j + yj2)

where - z. are real zeros and
]

result follows from noting that

positive signs.

The converse is not true.

- xj _ iyj are the complex zeros. The

F(z) consists of factors all having only

5.2 Hurwitz Criterion: Let

n n-i
F(z) = a0z + alz + .-. + an

have real coefficients with a. > 0, i = 1,2, ... n. Let
1

n n-2

G(z) = a0z + a2z + ... ,

n-I n-3

H(z) = alz + a3z + ...

Then since

(-l)nF(-z) = a0zn ....alzn-i (-l)nan ,

G(z) = ½ [F(z) + (-l)nF(-z)]

H(z) = ½ IF(z) - (-l)nF(-z)]

Definition: A polynomial is said to be stable if its zeros all lie in the left

half plane.
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Lemma 5.2. I : Let

_(z) = F<z)+ <-1)nF(-z)= G(z)
F(z)- (-l)nF(-z) H(z)

The___nnF(z) is a stable polynomial if and only if

i. l(z) is irreducible,

2. Re(l(z)) > 0 whe_____nRe(z) > 0,

3. Re(l(z)) < 0 whe_.__nnRe(z) < 0.

Proof: Let

n

F(z) = _ (z -
1 zj)

have all its zeros in the left half plane. If G(z) and H(z) had a

common factor, then

F(z) + (-l)nF(-z) = 0 ,

and

F(z) - (-l)nF(-z) = 0

Thus F(z) = 0 and F(-z) = 0. This is impossible since F(z) has zeros

only in the left half plane.

If z is in the left half plane,

IF(z)1< IF(- )1,

since each term Iz - Zkl of IF(z) l is less than each term Iz + zjl of

IF(-z)1. Now
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1(z)
F<z) + (-l)nF<-z)

F(z) - (-l)nF(-z)

F(z--'-_- (-i) n

F(z---[- (-i)n F(-z)

= IF(z)l 2 - IF(-z)l 2 + (-l)nF(-z) F(z) - (-l)nF(z) F(-z)

IF(z) - (-l)nF(-z)l 2

So

IF(z)l 2 - IF(-z)l 2
Re(l(z)) =

IF(z)- (-l)nF(-z)l 2

The remainder being imaginary_since F(-z) F(z) - F(z) F(-z) is purely

imaginary. Thus Re(l(z)) < O.

Similarly, if z is in the right half plane, Re(l(z)) > 0.

Conversely, let conditions i, 2 and 3 be satisfied. Then

IF(z)l > IF(-z)l when Re(z) > O, IF(z)l < IF(-z)l when Re(z) < O, and

F(z) and F(-z) have no common zeros. If F(z) had a zero in the right

half plane, then 0 > IF(-z)l > O, a contradiction. If F(z) had a zero

on the imaginary axis_then in a neighborhood of that point in the right half

plane IF(z)I < IF(-z) l, which again gives a contradiction.

Lemma 5.2.2: F(z) is a stable polynomial if and only if the poles of l(z)

lie on the imaginary axis_ are simple, and the residues at these poles

are positive.

Proom=_f: If f is stable, then by Lemma 5.2.1 IF(z)l

imaginary axis, and hence H(z) # O. If (z - zj) k

on the imaginary axis, then

l(z) -
(z

# IF(-z) I off the

is a zero of H(z)

i [A + B(z - + + _(z)(z - zj) k]

zj)k zj) ...
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in a neighborhood of z. where A # 0 and _(z) is analytic at z..3 3
pei@Let z - z. = _ _ = arg A. ThenJ

Barg l(z) = _ - k@ + arg i +_ (z zj) + ... +_A (z - zj) k

and as p - 0, arg l(z) - _ - k@. Nowwhen

TT
- -- <e<2 _ '

Re(l(z)) > 0, so

TT TT
- -<_- ke<--

2 2

From this we conclude

and

[(-_+_)<e<[( +=)

1 TT TT

[(-_+_) = -_ ,

1 17 TT
(=+ _) =[

Or

TT

- --_(i - k) +_ = 0
Z- "

TT

_ (I - k) + _ = 0

From this we conclude k = i and _ = 0.

Conversely, if the poles of l(z) lie on the imaginary axis, are simple,

and have positive residues, then
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a0 n- i Aj
l(z) = m z + B + E --

al j=l z- z°j
A. > 0
J

Letting z _ = shows that B = 0, thus

a0 n-i Aj
l(z) = -- z + Z

al j=l z - z.J

Clearly if Re(z) > O, Re(l(z)) > O, and if Re(z) < O, Re(l(z)) < O.

Since the poles are all simple, if l(z) were reducible this would mean

that as z approached the zero common to G(z) and H(z), l(z) would

approach a finite limit. This is equivalent to saying that the residue is

zero, which is a contradiction. Thus l(z) is irreducible.

Let

a0 n-i Aj
J(z) = l(z) - -- z = Z

al j=O z - z.3

alG(Z) - aOz H(z)

aI H(z)

(aI # 0 since - a I is the sum of the zeros of F(z)).

Let

Let

ll(Z) = I/J(z)

Fl(Z) = aI H(z) + alG(Z ) - aOz H(z)

Lemma 5.2.3: Fl(Z ) is related to ll(Z ) in the same way as F(z) is to

l(z). ll(Z) satisfies the conditions of Lemma 5.2.1 if and only if l(z)

does.
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Proof: The first part is trivial. Since l(z) = J(z) + (a0/al)z the

proof in Lemma5.2.2 shows that l(z) satisfies the conditions of Lemmai

if and only if J(z) does. If

then

J(z) = R(cos _ + i sin _) ,

ll(Z) = R-l(cos _ i sin _) ,

so Re(ll(Z)) and Re(J(z)) have the samesign. Thus Re(l(z)) and

Re(ll(Z)) have the samesign.

Thus we have shown

Lemma 5.2.4: Let

F(z) = G(z) + H(z) ,

where

n n-2
G(z) = aOz + a2z + ... ,

and

n-i n-3

H(z) = alz + a3z + ...

Fl(Z ) = alHl(Z ) + (alG(Z) - aozH(z)) .

Then F(z) is a stable polynomial if and only if Fl(Z ) is stable.
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We note that

n n-i

F(z) = a0z + alz + "'" + an

2n-i n-2

Fl(Z ) = alz + (ala2 - a0a3 )z

n-3 n-4

+ ala3z + (ala 4 - a0a5)z

n-2m+l n-2m

+ ala2m_l z + (ala2m - a0a2m+l)Z

If we let

Ak =

aI a0 0

a 3 a2 aI a0 0

a5 " a4 a3 a4

ak

and

8k =

2

ala 2 a0a 3 aI 0

ala 4 - a0a 5 ala 3 ala 2 - a0a 3 a I 0

ala2m - a0a2m+l

ala 4 - a0a 5 a3

bk

where bk = alak+ 1 when k is even or bk = alak+l - a0ak+ 2 when k is
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odd, we have

Lemma 5.2.5:

k-i

8k = a I 4k+ I

Proof :

a0al8 k =

a0a I 0 0

2

a0a 3 ala 2 - aoa 3 aI 0

2

a0a 5 ala 4 - aoa 5 ala 3 ala 2 - a0a 3 aI 0

ala 5 ala 4 - a0a 5 ala 3

bk

where a new row and column have been added. To the second column we add the

first column. To the fourth column we add a0/a I times the third column,

etc. Factoring aI from each column completes the proof.

Theorem 5.2.6: (Hurwitz Criterion). If

n

F(z) = a0z + ''" + an

and a 0 > O, then F(z) is a stable polynomial if and only if

41 > O, 4 2 > 0 ... 4n > 0

Proof: If n =

true for n - i.

I the theorem is certainly true. Suppose the theorem is
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If F(z) is stable, so is Fl(Z) , and thus

81> O, 62 > 0 ... 8n.l > 0

From Lemma5 we see

Since A1 = aI and

AI > 0 also.

Conversely, if

A 2 > 0, A 3 > 0 ... A n > 0

al/a 0 is the sum of the zeros of F(z),

then

AI > 0 ... An > 0 ,

81 > 0 ... 8n_l > 0

and Fl(Z) is stable. By Lemma 4 F(z) is stable. Hence the theorem is

true for n, and the induction is complete.

Hurwitz' criterion has been extended to polynomials with complex

coefficients. The proof and statement of the criterion are more complicated.

(See Marden, "The Geometry of the Zeros of a Polynomial in a Complex

Variable".)

5.3 Routh Criterion: Let

n n-i
F(z) = a0z + alz + ... + an ,

where a.z is real for i = 1,2, ... n and a0 > 0. If z = iy, then
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tan (arg F(iy)) =

n-i n-3
alY - a3Y + ...

n n-2

aOY - a2Y + ...

when n is even, and

tan (arg F(iy) - _/2) = -

n-I n-3

alY - a3Y + ...

n n-2

a0Y - a2Y + ...

_ _n n n-2
when n is odd. Let lyij i be the points where aoY - a2Y + ''' is

zero, and let _ = arg F(iy) when n is even, _ = arg F(iy) - _/2

when n is odd.

Lemma 5.3.1: Le___te be the number of times tan _ changes from positive

values to negative values at the points {yi] minus the number of times

tan _ changes from negative to positive values at the points {yi] as y

varies from - = t_.oo=. If F(z) has no zeros on the imaginary axis,

then

q - p = e ,

where p is the number of zeros with positive real parts and q is the

number of zeros with negative real parts.

Proof: Let us consider the graph of tan _ as y varies from - = to

and determine what happens to _.

At two consecutive points Yi and Yi+l' where the sign of tan

changes, the following occurs. If the changes are + to and + to -,

then _ increases by _ over (yi,Yi+l). If + to - and - to +,

or if - to + and + to -, then _ = O. If - to + and - to +,

then _9 = - n. In these cases be is either i, O, 0 or -i. Since
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I i
= ZAe = -- ZA_ = -- AL_

and since

i AL _ I AL arg F(iy)

we see by Lemma 5.1.3 that q - p = e. The points where tan _ does not

change sign can be ignored since they contribute nothing to g_.

p = ½(n - e) , q = ½(n + e)

Lemma 5.3.2: At the points {yi} where

n n-2
a0Y - a2Y + .... 0 ,

tan _ changes from positive to negative values as y increases when

and

n n-2

aOY - a2Y + ...

n-I n-3

alY - a3Y + ...

change from unlike to like signs, and from negative to positive values when

and

n n-2

a_VO_ - a2Y + ...

n-i n-3

alY - a3Y + ...

change from like to unlike signs.
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Proof: This follows from observing that

tan _ = -

n-i n-3

alY - a3Y + ...

n n-2

aOY - a2Y + ...

We now form the following sequence. Let

n n-2

fl (y) = aOY - a2Y + "'"

n-i n-3

f2_y_ " = alY - a3Y + ...

f3(y) = f2(y )

a0

_i y - fl(y)

ala2 - a0a3 n-2
Y

aI

f4(y) = f3(y )

2

aI

ala 2 - a0a 3

ala4 - a0a3 n-4
Y

aI
.°.

y - f2(y ) ,

n-3 n-5

= b3Y - b5Y + •..

f5(y) = f4(y )

alb 3

ala 2 - a0a 4
y f3(Y)

n-4 n-6

= c4Y - c6Y + •..

fn+l(Y)-f = K

a constant.
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Note the degree of f = n - m + i. All terms of f are even or oddm m

depending upon where n - m + i is even or odd.

Wewill temporarily assumethat none of the initial coefficients is zero

and that no two consecutive functions f vanish for the samevalue of y.m

Under these assumptions, we have

Lemma 5.3.3: As y increases_ except for m = i, if one of the functions

fm changes sign, the....total number of sign changes in fl f2' "'" fn+l

remains unchansed.

Proof: If fm changes sign at YO' then fm(Y0) = O. At Y0 then

fm+l(Y0 ) + fm_l(Y0) = 0 ,

so fm+l(Y0 ) and fm_l(Y0 ) differ in sign. The change in sign of fm

does not affect the total.

Lemma 5.3.4: The number of sign changes in fl,f2 .... fn+l increases when

fl changes sign so that the signs of fl and f2 change from like to unlike

signs_ and decreases when fl changes sign so that the signs of fl and f2

change from unlike to like signs.

Proof: This is obvious.

Lemma 5.3.5: The number of sign changes in fl "'" fn+l increases when tan

changes from negative to positive values and decreases when tan _ changes from

positive to negative values at the points {yi}.

Proof: This follows from the definition of tan _ and Lemma 5.3.4.
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Lemma 5.3.6: The increase in the number of sign changes of

as y varies from -= to = is equal to - e.

fl'f2 ' "'" fn+l

Proof: This follows from Lemmas 5.3.1 and 5.3.5.

Theorem 5.3.7: If none of the leading coefficients al,_2, "'" _n+l of

fl(y),f2(y) .... fn+l(y ) xanish_and no two consecutive functions fm(y )

and fm+l (y)

a I ... an+ I

ap._s.

vanish at the same time_ then the number of sisn chanses in

is equal to the number of zeros of F(z) with positive real

Proof:
For very large positive y the sign of fm is determined by am,

and for large negative y the sign of f is (-i) n-m+l _ . Hence the
m m

number of sign changes in fl,f2, "'" fn+l is given by the number of sign

changes in an+l, an, ... a I when y is large and positive and by the

number of sign changes in _n+l' - an' _n-i (-I n, ... ) a I when y is large

and negative. We see that every sign change in the first sequence becomes

a sign similarity in the second and vice-versa. Thus if the first sequence

has k changes in sign and n - k similarities, the second has n - k

similarities and k changes. The net increase in sign changes is

k - (n - k) = 2k - n.

Lemma 5.3.1 shows that

parts, is k.

By Lemma 5.3.6 e = n - 2k. The Corollary of

p, the number of zeros of F(z) with positive real

Corollary: (Routh Criterion). Under the conditions of Theorem 5.3.7, F(z)

is a stable polynomial if and only if the initial coefficients _l,a2 .... _n+l

of fl,f2 .... fn+l are all positive.

The initial coefficients can be easily calculated. Let
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n-m+l n-m-i
fro(y) = amy - _my

n-m-3
+ 'ymy

Then dividing fm(y) by fm+l(y) we find

_m+l_m - _m_m+l n-m- i

fm+2(y) = y
_m+l

_m+l?m - _m_m+l n-m-3
Y

_m+l

_- • • •

Thus

_m+2 =

_m+l_m - _m_m+l

_m+l

_m+2

_m+iYm - _mYm+l

_m+l

etc. If we form the following array

°t2 _2 _f2 62

n n

_n+l

we see that any row can be computed from the two preceding it by cross

multiplying first up and to the right and then subtracting the multiple down

and to the right, then dividing by the initial coefficient of the lower row.

- _'-._ ÷ initial term.

Of course, _I = a0' _2 = al' _I = a3' _4 = a4' ?i = a5' Y2 = a6'

etc.
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If an initial coefficient in one of the functions f (y) is zero whilem

the remaining coefficients in the function are not all zero, it is sometimes

possible to apply the test to (z + a)F(z)_ where a is chosen almost

arbitrarily.

To clear up what happenswhen one of the functions vanishes identically,

we present

Theorem 5.3.8: i.

point Y0' then all that are defined at

fn+l m 0 if it is defined.

If two consecutive functions f (y)
m

ever vanish at a

Y0 do also. In particular

2. fl(y ) and f2(y ) have a common factor if and only if there exists

a function f (y) m 0.
m

3. fl(y ) and f2(y ) have a common factor if and only if F(z) has at

least two zeros which are equal but opposite in sisn.

Proof: i and 2

[fm(y)}. To prove

follow easily from the definition of the sequence

3 we note

infl(-iz) = aozn + a2zn-2 + ...

in-lf2(-iz ) = alzn-i + a3zn-3 + ...

These have a common factor if and only if they vanish seperately. This can

happen if and only if F(z) = 0 and F(-z) = O.

If f (y) is the last of the sequence of functions which is not identicallym

zero, then

n-I

alz +

write

imfm(-Z) is a factor common to both a0zn + a2zn-2 + .-. and

n-3
a3z + ... To find the nature of the zeros of F(z) we can

F(z) = imfm(-Z) R(z)
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and consider these two functions imf(-z) and R(z) separately.

Note that zeros occurring on the imaginary axis occur as pairs which

are equal but opposite in sign.

Note that there can be no commonfactor if all the zeros of F(z)

in the left half plane.

To find the numberof zeros of

convenient to use Sturm's Theorem.

lie

imf(-iz) on the imaginary axis it is

(See Conkwright, "Theory of Equations".)

5.4 Michailov Criterion: Let

n n-I

F(z) = aOz + alz + ... + an

have real coefficients with a0 > 0. Let

2
X(y) = a -n an-2Y + "'"

3

Y(y) = an_lY an_3Y + ...

Finally let

V(y) = X(y) + iY(y)

Theorem 5.4.1: Le_.__tty vary from 0 to _. If V(Yo) = 0 then + iy0

are zeros of F(z). Thus F(z) contains at least two zeros (unless Y0 = 0)

for each time V(y) = 0.

If V(y) is never zero_ then V(y) varies throuMh n - 2p quadrants

where p is the number of zeros of F(z) with positive real parts.

Proof: As y varies from 0 to

_/2 or - _/2 to the increase in

_, each real zero of F(z) contributes

arg F(z), depending upon whether the zero
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is negative or positive. Each pair of complex zeros contributes _ or -

depending upon whether the real part of these zeros is negative or positive.

Since F(iy) = V(y), if F(z) contains p zeros with positive real

parts, the net increase in arg F(z) is (n - p) _/2 - p _/2, or

(n - 2p) _/2, and V(y) varies through n - 2p quadrants.

Corollary: F(z) is a stable polynomial if and only if V(y) varies

through n quadrants as y increases from 0 to =.

Theorem 5.4.2: F(z) is a stable polynomial if and only if the zeros of

X(y) and Y(y) are all real and separate each other.

Proof: Clearly if z is a zero of X or Y then - z is also. If F(z)

is stable, then V(y) varies through n quadrants. Hence Y is initially

zero, then X is, then Y is, etc., n times.

If F(z) is unstable_then V cannot vary through n quadrants. Hence

either X or Y has complex zeros or the zeros do not separate each other.

This criterion is thus graphical. To test for stability, the graph of

V or the graphs of X and Y are drawn, and whether or not the conditions

for stability are satisfied is observed by inspection.

5.5 Meerov Criterion for Aperiodic Stability: Sometimes it is desirable to

know if a polynomial has only zeros with negative real parts. To find out, the

following method has been derived.

n n-I

Lemma 5.5.1: If F(z) = a0z + alz + ... has only simple zeros_ then

F(z) has only zeros which are real and negative if and only if

_(z) = F(z 2) + zF'(z 2) has only zeros with negative real parts.
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Proo_f: To _(z) we apply the Michailov criterion. _(z) has only zeros

with negative real parts if and only if the zeros of Re _(iy) = F(-y 2)

and Im_(iy) = yF'(-y 2) are all real and separate each other.

When F(z) has only simple zeros_it is easy to see that F(-z) has

all its zeros on the positive real axis if and only if the zeros of F(-z)

and F'(-z) are all real, positive and separate each other.

By taking square roots it is obvious that the zeros of F(-z) and

F'(-z) are all real, positive and separate each other if and only if the

zeros of F(-y 2) and yF'(-y 2) are all real and separate each other.

Theorem 5.5.2:

then the zeros of

.

2.

(Meerov Criterion). If the zeros of F(z) are all simple,

F(z) are all real and nesative if and only if

the coefficients of F(z) are all positive.

The Hurwitz determinants for _(z) = F(z 2) + zF'(z 2)

all positive.

are

Proof: This follows directly from Lemma 5.5.1.

To see that the theorem is not true if F(z)

we only need to try F(z) = (z + 2) 2. Here 41

43 = O, A4 = 0.

Multiple zeros can be reduced to simple zeros by dividing

the factor common to F(z) and F'(z).

contains multiple zeros_

= 2, 42 = 4,

F(z) by
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EXERCISES

I. Establish stability criteria for first, second, third, fourth, fifth

and sixth degree polynomials_

2. Establish a relationship between the Hurwitz determinants and the

initial coefficients in the Routh criterion.

3. Investigate Sturm's theorem and Sturm's functions concerning the number

of real roots of a polynomial in an interval.

.

o

Give an example of a polynomial whose coefficients are all positive

but which has zeros in the left half plane.

Extend Michailov's criterion to cover polynomials with complex

coefficients.
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VI. Stability Techniques for Feedback Systems

6.1: In many instances one or more parameters in a system maybe varied

The problem of stability then is resolved into one of choosing those

parameters so that the roots lie in the left half plane.

Oneparticular type of system where parameter variation frequently

occurs is a feedback system, which is best described in terms of transfer

functions. Before, the input I was operated on by a transfer function

F(s) = h(s)/g(s) to give the output 0. That is,

0 = [h(s)/g(s)] I

In a feedback system, however, the output 0

compared to form an error term. Specifically, 0

and added to I to form an error term E.

E = I + eieO

is "fed back" and

ie
is multiplied by e

In this situation @ = _ is called negative feedback while e = 0 is

positive feedback. E is then operated on by a transfer function of the

form F(s) = Kh(s)/g(s), where K is the parameter to be chosen, to

yield 0.

0 = [Kh(s)/g(s)] E

If E is eliminated from these equations, we find

0 = [Kh(s)/(g(s) - Keieh(s))] I ,

which is a stable system if and only if the zeros of g(z) - Keieh(z) lie

in the left half plane with simple zeros perhaps lying on the imaginary axis.
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Kh(s)/[g(s) - Keieh(s)]

is called the closed loop transfer function while

Kh(s)/g(s)

is the open loop transfer function.

The techniques which follow are concerned with the zeros of a polynomial

of the form

F(z) = g(z) - KeiSh(z) ,

where e is fixed, and K varies over non-negative values.

6.2. Nyquist Criterion: Let

F(z) = g(z) - KeiSh(z) ,

where

n n-I
g(z) = z + az + ..- ,

m bzm-ihiz) = z + + ...

with no common factors, n _ m, 8 and K are real constants.

Theorem 6.2.1: Let R be any number large enough so that a circle of radius

R centered at the origin contains the zeros of F(z) and g(z). Let CR be

a semi-circular contour going along the imaginary axis from - R to R

avoiding the zeros of g(z) on the imaginary axis by arbitrarily small semi-

circles centered at those zeros_ then alonK the circle from (0,R) to

(0,-R) in a clockwise manner. Then the number of times Kh(z)/g(z) passes

throush e-i0 s z varies around CR is equal to the number of imaginary

zeros of F(z). If F(z) has no ima$inary zeros_ let P be the number of
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F = K_(s)/g(s)

A Feedback System
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zeros of g(z) with positive real parts, Z be the number of zeros of

F(z) with positive real parts, N be the number of counter-clockwise

encirclements of e by Kh(z)/g(z) as z varies around CR. Then

Z = P - N.

-ie

Proof: If Kh(z)/g(z) passes through e then for some z0

-ie

mh(zo)/g(z0) = e

Then

g(z0) - Keieh(z0) = 0

Since this process is reversible, the result follows.

If F(z) has no imaginary zeros, the number of encirclements of the

origin by F(z)/g(z) is p - Z, since the contour is taken in a clock-

This is the same as the number of encirclements of thewise manner.

origin by

-ieF(z)/g(z ) -iee = e - Kh(z)/g(z) ,

-ie
which is the same as the number of encirclements of e by Kh(z)/g(z).

Corollary: Under the conditions of Theorem 6.2.1 a necessary and sufficient

condition that F(z) be a stable polynomial is that N = P.

Since n _ m, Kh(z)/g(z) approaches a finite limit, either

as z becomes large. Thus the contour may be closed by letting

infinity.

If g(z) has no zeros on the imaginary axis, Kh(z)/g(z)

bounded portion of the complex plane.

The theorem is still valid if the zeros of g(z)

K or O,

R approach

remains in a

on the imaginary axis
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are by-passed by small semi-circles in the right half plane.

If e = 0 or _ and g(z) and h(z) have real coefficients, then

the path of Kh(z)/g(z) is symmetric with respect to the real axis, the

path when Im(z) > 0 being the image of that when Im(z) < 0.

K enters into the problem as a factor only of the amplitude. The

usual procedure is to draw the graph of Kh(z)/g(z) when K = i, then

by appropriately adjusting the scale of measurementto achieve stability_

an acceptable value of K is found.

M and N Circles: In conjunction with the Nyquist criterion, we note as

z varies along the imaginary axis, both the amplitude and the argument of

the closed loop transfer function

Kh(z)/[g(z) - Keieh(z)]

change.

If g(z) Keieh(z) has a zero near the imaginary axis, then the

amplitude becomes relatively large along that portion of the imaginary

axis nearest that zero. Hence not only is stability desirable, but, in

order for the homogeneous solution to have sufficient damping, the closed

loop transfer function should not become too large as z varies along the

imaginary axis.

It can be shown that for the system

the error

y" + 26y' + y = I ,

y(0) = 0 , y'(0) = 0

Ye = y - I satisfies

oo

ye2dt
O

= minimum
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when 6 = ½

maximum when

and that the function I-_ 2 + 2i6_ + iI -I achieves a

w = + ffl - 262

When 6 = ½ this maximum is (2/3) q_ _ 1.15.

It has been found experimentally that the maximum amplitude of the

closed loop transfer function should be between 1.15 and 1.5.

In a lesser way the arguments of Kh(z)/[g(z) - Keieh(z)] as z varies

along the imaginary axis are also useful. If the input of a system is

constant or sinusoidal, then the phase shift between the input and output is

determined by the closed loop transfer function.

The paths of constant amplitude and constant argument of

Kh(z)/[g(z) - Keieh(z)]

show.

Let Kh(z)/g(z) = X + iY, and let

Then dividing the numerator and denominator of the fraction by

find

which reduces to

in the Kh(z)/g(z) plane are circles, as we now

IKh(z)/[g(z) - Kei@h(z)]l = M.

g(z), we

ie
I(X + iY)/[l - e (X + iY)] I = M ,

IX M2 + M 2 = M 2 2-M--_--_ i cos 8_ 2 [Y +M_ 7 1 sine] 2 [ M2" 7 1]

-ie
It is easy to show that e is inside these circles as long as

M> i.

Let arg (Kh(z)/[g(z) - Kei@h(z)]) = _, and let N = tan _. Then
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Im( x+iY )
i - ei@[x + iY]

N =

1 - X + iY]

Y + sin @<X 2 + y2)
N =

X - cos 8(X 2 + y2) '

which reduces to

2 I 12 N 2 + i

[ N )'] + [Y + 2(sin @ + N cos @)'J = )2X - 2(sin @ + N cos 8 4(sin @ + N cos @

These circles can be superimposed on a Nyquist diagram to aid in determining

an appropriate choice for the parameter K.

6.3 The Root Locus Method: Let

F(z) = g(z) - KeiSh(z) ,

where

n n-I
g(z) = z + az + ... ,

m i
h(z) = z + bzm" + ''" ,

with no common factors, n a m, @ and K are real parameters and @ is

fixed. If K varies, the zeros of F(z) vary in a continuous manner in the

complex plane. Let us consider what happens. If

g(z) - Kei@h(z) = 0 ,

then
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Kh(z) = e-ie
g(z)

and

arg h(z) - arg g(z) = - e - arg K + 2k_

where k is an integer. If

m _.

g(z) = _ (z - pi ) i ,
i=l

n _.

h(z) = _ (z - zi) i ,
i=l

then

m n

E _i arg (z - zi) - E _. arg (z - pi )
i=l i=l i

= - e - arg K + 2k_
m

Thus the locus of the zeros of F(z) for all values of K consist of those

points z where the arguments just defined equal - 0 - arg K _ 2k_.

With the aid of a device called a Spirule this locus can be quickly found

and a suitable choice of the parameter K easily chosen. The theorems

which follow give guidance in constructing the "root-locus".

Definition: The root-locus of F(z) is the set of all points

z is a zero of h(z) or for which there is a real number K,

such that F(z) = 0.

z such that

- m < K < =,

Write The Spirule Company, 9728 E1 Venado, Whittier, California.
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Definitiq_: The positive root-locus of F(z) is the set of all points z

such that z is a zero of h(z) or for which there is a real number K,

0 < K < =, such that F(z) = 0.

The zeros of h(z) are included in the root-locus_since they are limit

points of the zeros of F(z) for all appropriate choices of K, i.e. they are

the zeros of F(z) when K = _.

Theorem 6.3.1: Let z be a point in the complex plane. The following

statements are equivalent.

i. z is on the root-locus.

ii. cos 8 Im(h(z)g(z)) + sin e Re(h(z)g(z)) = 0.

Proof: Suppose z is on the root-locus. If g(z) # 0, then for some

K _ O,

KeiSh(z)/g(z) = i

Thus

h(z)/g(z) K-I[= cos @ - i sin 8]

and

h(z)g(---_) = K-iIg(z)12 [cos 8 - i sin 8]

Since K is real, equating real and imaginary parts,

Re(h(z)g(---_)) K-llg(z)l 2= COS e

Im(h(z)g(z)) = K'llg(z)l 2 sin e

Multiplying the first by sin 8, the second by cos 0 and adding completes

the proof. So i. implies ii.
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Conversely, if ii. is satisfied, then Im(ei@h(z)_)) = 0, so

eiOh(z)_) = R(z) _where R(z) is real. If R(z) = 0, then either

h(z) = 0 or g(z) = 0, and z is on the root-locus. If R(z) ¢ 0,

let K = Ig(z) 12/R(z). If K = 0, then g(z) = 0, and z .is on the

root-locus. If K ¢ 0, then Kei0h(z)/g(z) = i, and

g(z) - Keieh(z) = 0. So z is on the root-locus, ii. implies i.

J Note that K can be found by

or by

K Ig(z)l 2= cos 0/Re (h(z)g(z))

K -' "[g(z)l2= sin e/Im(h(z)g(z))
[ l

More can be said if g(z) and h(z) have real coefficients.

Lemma 6.3.2: If z = x + iy, then

h(z) = h(x + iy) :

m

h(J) (x) (iy)J/j ! ,

j=O

A

g(z) = g(x- iy) = n g(j) (x)(-iy)J/j '.

j=0

Proof: These are MacLaurin expansions.
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Lemma 6.3.3:

h(z)g(z) = 7, 7, (-I) j-k (x)g (j (x)

j=0 J" k=0

m

Re(h(z)g(z)) = o (-l)ky 2k
_ (2k) '
k=O " i=O

(_l)2k-ih(i)(x)g(2k-i)(x)

m

Im(h(z)g(z)) =
(_l)ky2k+l 2k+l

E E
k=0 (2k + i)! i=0 2k+l) i) 2k+l

. (- -ih(i) (x)g
(2k+l'i)(x)

Proo_____f:This follows from Lemma 6.3.2. and then separating real and imaginary

parts.

Theorem 6.3.4: If g(z) an.__dh(z) have real coefficients_ then z is on the

root-locus if and only if

cos @
=o ky7, (-i) 2k+l 2k+l

k=O (2k + i)' 7," i=0 2k+li

(_l)2k+l-ih(i)(x)g(2k+l-i)(x)

+ sin 8 Y. (-l)ky2k 2k

k=0 (2k) ' 7." i=0 "

(_l)2k-ih(i)(x)g(2k-i)(x) = 0

Theorem 6.3.5: l__f g(z) an___dh(z) have real coefficients, then the root-

locus contains the entire real line (y = 0) if and only if @ = 0 o/.r

Proof: If the real axis is contained in the root-locus, then y = 0 satisfies

the equation of Theorem 6.3.4. Letting y = 0)we find that sin @ = 0
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and @ = 0 or _. The converse is trivial.

Definitio___n_n:A point on the root-locus is a multiple point if for some value

of K the point is a multiple zero of F(z) or if the point is a multiple

zero of h(z).

Theorem 6.3.6: The multiple points of the root-locus are isolated_ finite

in number_ and satisfy

h(z)g'(z) - g(z)h'(z) = 0

Proof: If z is a multiple zero of F(z) then F(z) = 0 and

F'(z) = O. Eliminating Ke i@ results in the above equation, a polynomial

of degree n + m - i.

Theorem 3.6.7:

functions of K.

The points on the root-locus of F(z) are continuous

Proof: This follows directly from Hurwitz's theorem. Note since the multiple

points are isolated, that if a point is on the root-locus with multiplicity _,

then _ distinct zeros of F(z) approach the point for some values of K.

Theorem 6.3.8: With the exception of the multiple points_ the points on the

root-locus are differentiable functions of K.

Proof: Let z0 be a simple zero of F(z) when K = KO.

that

z - z0
limit

K - K 0
K _ K0

We need to show

exists when z is a point on the root-locus and z - z0 as K - K 0. We have
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0 = g(z) - Keieh(z) ,

0 = g(z) - Koeieh(z) (K- Ko)eieh(z) ,

0 = (z - z0)W(z) - (K - Ko)ei0h(z) ,

where W(zO) # 0 and

dFIW(Zo) - dz

z = z0

K= K0

From this we find that

z - z0
iimi t

K - K0
K- K 0

= eieh(zo)/[g '(z 0) - K0eieh '(z0) ]

The Positive Root-Locus:

Theorem 6.3.9: If n > m, the zeros of F(z) become asymptotic to n - m

rays starting from - --
a - b

n - m
and passin$ through

.El+2tOrT.
a - b i_ n-m)'--

z = - -- + e
n - m

for k = 0,1,2, ... n-m-i as K becomes large. Furthermore

Z

a - b

n - m

.e+2k'rr.
i i [n_____)

+ K n-m e

with k = 0,1,2 ... n-m-i become arbitrarily good estimates for n - m

zeros of F(z).
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Proof: The method of proof is straight forward but rather long and goes as

follows. a- b
Wefirst perform a translation so that - --n - m is at the origin.

Wethen choose one of the points

i i__ (0+2k_.
Kn-m e --nqm---m)

and perform a rotation so that it lies on the positive real axis.

perform a contraction so that it lies at the point

of the resulting function lies arbitrarily near i

a - b
Let z = t - -- Then

n - m

We then

i. We show that a zero

and reverse the steps.

F(z) = tn + nb - ma tn-i + ...
n - m

- Keie (tm + nb - ma tm-i + ... )
n - m

nb - ma
Choose k. Letting A = and

n - m

i (8+2k_.

t = We

we find after multiplication by

in( e+2k_-.- n---rf-)
e

that F(z) = 0 is equivalent to

O+21<rT.
- i ( n-'_-- )

n /_n-iW + e

n

+ Z c_ .Wn-3

j=2 3

.O+2kn.

K wm + _m-i e-i[ n--_-m-) + Z m

j=2
mj).[_ ----_j 0

where _. and _. are the appropriate coefficients.
3 3
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Define

M

n

I_jI(31A ] + l)'J+2(4/3)n-J +
j=2

m

l_jl (31AI + i)-J+2(4/3) m-j ,
j=2

1

= Kn-mP

and

3mM 3mM

¢ - 2 K 2/(n - m)
P

If K is greater than the maximum of

(31A I + i) n-m ,

n-m
R

(3m+iM) 2

and

n-m

+ _i/2 (n-m) 2
[3_/£_I1 - e- I}]

+ _i/2 (n-m)
then p > 31A I + i, C < i/3 and c < ½11 - e-- I" Letting

n

= _/p and dividing by p , we find F(z) = 0 is equivalent to

(e +2krr.
-i n.-_ ) _n-i n_n + A e + _ -j_n-j

P j=2 otjp

i (e+2k_. )
m A - _) _m-i m

- _ + -- e + Z _jp-j_m-j =
P j=2

0

Thus

+ . -e+2k-rr 1A -l(n--_--) (_n-m--e - i)
P

I n -j+2_n-j+ -_ j_=2 ¢_jP
P

m )- j+2_m- j
E _jp : 0

j=2
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Let

and

. .8+2k1"T. )
_0(_) _m-i _ + A -l[ n---_) (_n-m

P
1)

n -j+2_n-j m -j+2_m- j(_) _ i =% _jp 52 jn
p j 2 j=2

The zeros of _n-m _ i are spread out at equal intervals on the unit circle;

+ _i/2 (n-m)
the first after I in either direction are e-- Consider a circle,

F, of radius c (previously defined). On F the real part of _J for

j = 0,I, ... ,n-m-i is positive. So I_n'm'l + ... + iI > i. On r we

then have

I_(_)I > (i - c)m-I • i , i3

i m

> ¢

Also on F,

_ M/P 2 = (I/3)m¢

So on F, By Rouch_'s Theorem _0(_) and _0(_) + _(_) have

the same number of zeros within F, namely i zero. Thus there is a zero,

_j, of _0(_) + _(_) such that ]_j - i i < c. There is a zero, e0j, of

..e+2kTl. (_m A_ i(0+2k_) )n

-i -1 tn_--_ ) __m- i - -----_n n
W + A_ e + .... K + e + ...

such that ,IWj - p l,< pC = 3mM/p. Thus there is a zero, t_j, of F(t - na --mb)

such that

i 1 i 0 +2k'rT" I
_ Kn-m (n---_ )

tj e

i

< 3mMIK n-m
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Finally there is a zero, zj, of F(z) such that

-- (e+2k_. _ i
a- b + Kn-m n---_-)- e < 3mM/Kn-m

zj n - m

It is evident that, for

a certain distance of

K sufficiently large, once the zero comeswithin

a - b
n - m

--!--i i 8+2k_.

+ Kn-m (n--_ )e

it remains within that distance for all large K.

Definition: The center of sravity of

n- i Ke ieF(z) = (zn + az + -.. ) - (zm + bzm-I + "'" )

when n > m is

Corollary: When n > m, the asymptotes of the root-locus pass throug h the

center of gravity.

Corollary: When n > m, the angles subtended by the asymptotes of the root-

locus from a line parallel to the positive real axis are

8 +2kn

n - m

fo__/_r k = 0,i ..... n-m- i.

The following is attributed to Robert M. Stewart of the California

Institute of Technology by W.R. Evans.
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_: When n > m the center of gravity is Riven by

i [ E zeros of g(z) -Y zeros of h(z)]
n - m

Proof: The sum of the zeros of g(z) is -a The sum of the zeros of
_--

h(z) is -b.

Theorem 6.3.10: Let

g(z) = nj (z - zj)_J and h(z) = Hj (z - pj)_J

where

an__!d

_,.Of. = n
J ]

EjBj -- m

As K approaches 0, _. distinct branches of the positive root-locus of
-- ]

, , distinct
F(z) approach each zero, pj of g(z). As K approaches = _j

branches of the positive root-locus of F(z) approach each zero, zj, of

h(z).

Proof: This follows directly from Hurwitz's Theorem.

Definition: The angle of departure (arrival) of the root-locus of F(z) at

z0 is the angle made at z0 by the tangent to the root-locus for increasing

(decreasing) K.

Theorem 6.3.11: If pj is a zero of g(z) of order

root-locus of F(z) departs from pj makin$ angles

_j, then the positive
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_0j = (i/_j)( 7. _i arg(pj - zi) - E _. arg(pj -
i i#j i

pi ) + 8 - 2k_) ,

where k = 0,i .... ,_. i.
-- j

If z. is a zero of h(z) of order _j, then the positive root-locus

of F(z) arrives at z. makin$ angles
-- j

8. = (1/6)( _ _. arg(z -
J J i l j

pi ) - E _i arg(zj
i#j

- zi) - @ + 2kTT) ,

where k = 0,I .... ,_j - i.

Proof: Consider one of the branches of the positive root-locus which departs

from pj. Choose K close to zero, and let z be on that branch for that
!,

value of K. Then

Ke i@ _ (z - zi) / H (z - pi ) l
i i

= i

Taking arguments,

T _i arg(z - zi) - _2 _'i arg(z - pi ) + @ = 2k_

Solving for those terms involving pj,

0, (or _), completes the proof.

(or z ), and letting K approach
J

,_The°remL. 6.3.12: -----Letz0 be any point on the real axis, • h(z) __and g(z)

r s be the real zeros of h(z) and
have real coefficients , {zi] I an___d{pi} I

g(z) greater than z0, and let @ = 0 (@ = 7). Then z0 is contained

in the positive root-locus if and only if

is even (odd).

r + s
1
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Proof: Consider @ = 0. Since g(z) and h(z) have real coefficients,

zeros of g(z) and h(z) occur in conjugate pairs when complex. On the

real axis, if z I and z I are complex conjugates, then

arg (z - Zl) + arg (z Zl) = 0

Now consider Kh(z0)/g(z0). On the real axis

arg [Kh(z0)/g(z0) ] = 7' _i arg(z0 zi) T _i" arg(z 0
i i

Pi ) ,

where the sums are taken over real zeros greater than z0, complex zeros

adding to give 0, zeros less than z0 giving 0. Each of the arguments

left equaling _.

If E r _. + E s _ is even, then E_ - E_
i l i i i _i i _i is even and z0

is on the positive root-locus. If _ _ + E_ _ is odd then
l i 1 i '

E_i _i E_l _i is odd and z0 is not on the positive root-locus. The

case @ = _ is similar.

Theorem 6.3.13: If the coefficients of g(z) and h(z) are real, 8 = 0

(or _), and F(z) has a zero of order m at z = a on the real axis

fo__._rK = K0_ 0 < K 0 < _, then the positive root-locus arrives at z = a

making angles

@ k = 2k_/m , k = 0,i, ...,m - i ,

and departs making angles

_k = (2k + l)_/m , k = 0,i, ...,m - i ,

when the number of zeros of g(z) plus zeros of

is odd (gven) or arrives making angles

h(z) to the right of a
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ek = (2k + I)TT/m , k = 0,i, ...,m - i ,

and departs making angles

_0k = 2k_/m , k = 0,I, ... m - i ,

when the number of zeros of g(z) plus zeros of h(z) to the right of a

is even (odd).

Proof: Since the coefficients of g(z) and h(z) are real, for 8 = 0

(or _), if zeros of F(z) leave or arrive at the real axis, they do so

in conjugate pairs as K varies from 0 to K O. The evenness or oddness

of the number of zeros of g(z) plus zeros of h(z) to the right of

z = a is the same as that of g(z) - Koeieh(z ) and h(z).

KoeieWrite F(z) = g(z) - h(z) - (K- Ko)eieh(z) = O, where Z is

on one of the branches of the positive root-locus near a. Let

g(z) Koei_h(z ) = (z - a)mG(z) where G(a) # O. Then G(z) is real

on the real axis and has the same number of zeros to the right of a as

g(z) - KoeiSh(z ). We have (z - a)mG(z) (K - Ko)eiSh(z) O. Dividing

by the second term and taking arguments,

m arg (z - a) + arg G(z) arg (K - K O) - e - arg h(z) = 2k_

arg (z - a) = (l/m)[- arg G(z) + arg h(z) + 8 + 2k_ + arg (K - KO) ]

Now - arg G(z) + arg h(z) + e + 2k_ approaches either an even (odd) or

odd (even) multiple of _ as z approaches a, depending upon whether the

number of zeros of g(z) plus zeros of h(z) is even or odd. Since G(z)

and h(z) are non-zero and real on the real axis. Arg (K - K O) is either 0

or _ depending upon whether K > K0 or K < K O. Letting K approach K0
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completes the proof.

6.4. J. I. Neimark's D - Partitions: The method of D-partitions is

essentially an inside-out Nyquist diagram. It gives direct information

concerning the acceptable values of the parameter K. We will prove several

theorems outlining various properties of the method and then formally state

n n-I
Let g(z) = z + az + ... ,

+ bzm-I + ... , n e m and 8 be a constant.

the procedure at the end of the section.

m
h(z) = z

-ie
Definition: Let K = e g(z)/h(z). As z varies from i= t__ooio=

along the imaginary axis, K describes a series of paths_ approaching

only at the imaginar I zeros of h(z) or as Izl -_ _. These paths are

called the D-contour.

Theorem 6.4.1:

regions.

Th____eD-contour divides the plane up into a finite number of

g(z) - Keieh(z)Theorem 6.4.2:

half plane and in the left half plane for all values of

the same region.

has the same number of zeros in the right

Proof: Suppose K0 and K I are in the same region but

and g(z) - Klei0h(z )

planes. If K0 and

region, then for some point K between K0 and K I

g(z) - KeiSh(z) has an imaginary zero. Then K =

the D-contour and not an interior point.

K lying within

g(z) - K0eieh(z )

do not have the same number of zeros in the two half

K I are connected by a simple arc lying within the

on the arc

-ie
e g(z)/h(z) is on
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Theorem 6.4.3: The image of the left-plane under K

locally to the left of the path taken by K on the

-i0
= e g(z)/h(z)

D-contour.

lies

Proof: If z0 is on the imaginary axis and h(z0) # 0, we express

-i_
locally as a power series. If K 0 = e g(z0)/h(z0) , then

K (m) (z0)

K- K 0 = _ m! + o(i)] (z- zo)m

K

where K (m) is the first non-zero derivative, and o(i)

arbitrarily small by choosing z sufficiently close to

we have

arg (K - K0) = arg (z - z0) + arg FLI.

can be made

z0. Taking arguments,

+ o(1)]

If o(I) is small enough,

arg _K(m_Izo) + o(i)]

varies little, remaining close to

We thus see that a small change in the direction from z0 to z results in

m times that change taken by K. Thus that part of the complex z plane

just to the left of the imaginary axis is mapped just to the left of the D-

contour in the K-plane.

We therefore shade the region just to the left of the D-contour.
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Theorem 6.4.4: Le_._._tK vary from K 0 in a region D O to K I in a regipn

DI, cutting the D-contour only at K . At K let there be p shadings in

the region DO and q shadings in DI. Then as K varies from K 0 t__ooK I

* KeiSh(z)through K , g(z) - has a net increase of p - q zeros in the

right half plane.

Proof:

imaginary axis when K =

because of this zero and

to right half plane as K

Consider one of the zeros of g(z) - Keieh(z) which is on the

K . If K0 is in the region which is shaded

K I is not, then this zero moves from the left

varies from K0 to KI.

If K 0 is unshaded and K I is, the zero moves from right to left.

If both are shaded, the zero stays in the left half plane. If both are

unshaded, the zero stays in the right half plane. The conclusion follows

from considering the net effect.

The method of D-partitions is thus as follows:

-i_
i. The graph of K = e g(z)/h(z) is drawn as z varies from

- i_ to i=.

2. The left side of the graph is shaded locally.

3. The number of zeros of F(z) = g(z) - Keieh(z) in the right half

plane is determined in one of the regions, e.g. for K = 0.

4, The number of zeros of F(z) in the right half plane in the other

regions is determined from the one already determined by considering

the shadings on the boundary between adjacent regions.

5. The stable situations, if any, are then found by inspection.
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The power of the method of D-partitions lies in the fact that it tells

directly which values of K are acceptable and which are not. While the

root-locus method gives excellent information concerning the zeros of F(z),

it is fairly difficult to computewhich values of K are acceptable for

stability purposes.

The Nyquist criterion sheds more light on K than does the root-locus

method, but again only indirectly.

The method of D-partitions has been extended to polynomials involving

two parameters, but is more complex. See Chapter X.
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EXERCISES

i. Consider the feedback system with transfer function i/[s(s + 26)] in

the open loop with 0 _ 6 K i.

a. Showthat

0 i
I 2

s +26s +i

b. If the input of i show that the output y satisfying y(0) = 0,

y'(0) = 0 is

y = i + ietsin
(i - 62) ½

where tan _ = _i - 62/(-8).

c. If Ye i - y, show that

;= ye2dt = i + 482
8

o

which has a minimum when 6 = ½.

d. Show that

I l l=-w 2 + 2i6w + 1 [(i - w2) 2 + 4822] ½

is maximal when W = + Jl - 282 and that the maximum is

e. Show that if 8 = ½ this maximum is 2/3 v_ _'_ 1.15. Hence the

maximum of
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.

.

.

.

when

OO

ye2dt

0

is minimal under zero initial conditions with a unit step input is

1.15.

n n-i

If F(z) -- z + alz + ... + an

-i
F(D)y = sin wt has y = F(i_)

has no imaginary zeros, show that

sin wt as a solution. Thus the

phase shift between the input sin wt and the output y is determined

by the transfer function evaluated at iw.

The root-locus of F(z) has asymptotes if n > m or if n < m. If

n = m, does the root-locus ever follow asymptotic lines toward =?

so, describe the asymptotes.

If

Show that the equations of the tangent lines of the root-locus approach

the equations of the asymptotes of the root-locus as the root-locus

approaches the asymptotes.

Prove Theorem 6.4.1. To show a countable number of components is easy,

since the complex plane is separable. If a valid proof is found for

showing only a finite number of components, the author would like a

copy.
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VII. Differential-Difference Equations, Time Lags

7.1 Existence: If there is a time lag between the input and output of one

of the components of a system, the system can no longer be adequately described

by a differential equation, but rather must be described by a differential-

difference equation. Differential-difference equations share many of the

properties associated with differential equations. There are existence and

uniqueness theorems, matrix forms for systems of equations and characteristic

equations for equations with constant coefficients. There are also, however,

substantial differences between differential and differential-difference

equations as we shall see.

In the interests of simplicity we will assume that there is only one

time lag. For those who are interested in more than one time lag, we

recommend the books listed at the end of the chapter.

Let us consider the equation

n m

i(t)y(i)(t) + E b i(t)y(i)(t T) f(t) ,T, a - =
n- m-

i=0 i=0

where a.(t),l bi(t) and f(t) are continuous functions of t, and put

the equation in matrix form.

' = If n = m, we writeLet y' = YI' Yl = Y2'''"Yn-2 Yn-l"



ii0

y' + 0y - Yl

yl + 0y + 0yI - Y2

+ y'(t-_) + 0y(t-_)- Yl(t-T)

+ y_(t-_) + 0y(t-_) + 0Yl(t-T) - Y2(t-_)

= 0

=0,

Yn-'2 + 0y + 0Yl + .... Yn-i + y'n-2(t-_) + 0y(t-_) + 0Yl(t-_) .... Yn_l(t-T) = 0,

! !

a0Yn_ I + anY + an_lY I + ... + alYn_ I + b0Yn_l(t-_) + bnY(t-_) + bn_lYl(t-_)

• .. + blYn_l(t-_ ) = f(t) .

If

A o

0

i 1 ' B0

a0

0 -i 0 ... 0

0 0 -I ... 0 1

• ° ° ° ° ° ° . ° ° ° .

0 0 0 .. -i

a a ... aIn n-i

A

i 0

)I ' BT

b o

0 -i 0 ... 0
\

0 0 -i ... 0\

".i."""
b b In bn-i """

y _ IYlYl

Ynlj flit)
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then

AoY' + BoY + A Y'(t- T) + B Y(t- T) = FT T

is equivalent to the nth order equation.

If n > m, let A = 0,T

B
T I 0 0 ... 0 ... 1

0 0 ... 0 ...

• • . . • • • • • • o • • • •

b ... b0 0 ...m bm-i

The matrix equation is again equivalent to the nth order equation•

If n < m, let A0 = 0,

B0 = I 0 0 ... 0 ... 1

0 0 ... 0 ...

• • • • • • • • • . • • •

a a ... a0n n-I "'"

and the equations are again equivalent. The system when n < m has some

fundamental difficulties, however, if solutions are desired for increasing t.

If 0 is the initial point under consideration, then in the interval (T,2T)

Y depends upon the behavior of Y' in (0,T). In general, in (n_,(n + I)T),

Y depends upon the behavior of y(n) in (0,t). Y may not be infinitely

differentiable in (0,T), especially if F is not. So we should not

expect a general existence theorem when n < m.

When n _ m we note that A0 is non-singular if a0 # 0. We make

that assumption• The following theorem, stated for a system of equations
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clearly contains the nth order equation with n _ m as a special case.

Theorem 7.1.i: __Let T > 0. __Let A 0, B0, A __and BT be continuous n

by n matrices. Let F be a continuous n by 1 matrix and G be_____a

continuously differentiable n by i matrix. Let IA01 # 0.

i. There is a unique function Y(t)_ continuous for all t m 0,

satisfying

AoY' + BoY + A_Y'(t
T) + B Y(t - T) = F(t) ,

T

Y(t) = G(t) , 0 < t _ _ ,

for all t > T, t # nt, n = 1,2,3, ...

2. Y(t) is continuously differentiable for all t > 0, t # nT,

n = 1,2,3, ...

3. Y(t) is continuously differentiable for all t > 0 and satisfies

AoY' + BoY + ATY'(t - T) + BTY(t
T) = F(t) ,

Y(t) = G(t) , 0 _ t _ T ,

for all t > T if and only if

A0(_)G'(T ) + B0(T)G(T ) + A (T)G'(0) + B (T)G(0) = F(_)T

Proof: Since IA01

-I -i

# 0, A 0 exists. By multiplication by A 0 we have

a similar equation with A 0 now the identity. Thus we assume A 0 = I.

In the interval [T,2T], let

V = F - A G'(t - T) - B G(t - T)
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Our differential-difference equation is of the form

Y' + BoY = V(t) , Y(T) = G(T)

By Theorem3.1, this possesses a unique solution which agrees with G

on [ 0,T].

In the interval [2_,3_], let

V = F - A Y'(t - _) - B G(t - _)
T T

and solve

etc.

Y' + BoY = V(t) , Y(2T) = Y(2T) ,

Now Y' is continuous at t = T if and only if Y'(T+) = G'(T-).

Since Y(T+) = G(T), this happens if and only if

A0(_)G'(_) + B0(T)Y(T) + A (_)G'(0) + B (_)G(0) = F(T)T T

Y' is continuous at t = 2T if and only if Y'(2_+) = Y'(2T-).

Looking at the differential difference equation, we see that this happens

if and only if Y' is continuous at t = _, etc.

When A0, B0, A and B are constant matrices it is easily

seen that for an appropriate choice of C, Y = CeXt is a solution of

AoY' + BoY + A Y'(t - T) + B Y(t - _) = 0T T

whenever

IAoX + B0 + AXe-XT + B e-XTI = 0T I"

The general solution to the non-homogeneousequation would be of the form
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_.t1
y = _ Ci(t)e + Y0(t) ,

i

where Xi are the roots of the characteristic determinant above, Ci(t)

are appropriate matrices with elements polynomials in t and Y0 is any

solution of the non-homogeneous equation. The equation will be stable if

and only if all the Xi's are simple zeros and have non-positive real

parts or have negative real parts.

7 2 Solution by the Laplace Transform: If A0, B0, A and B,j," .... _f q-

constant and IA01 # 0, it is possible to solve

are

AoY' + BoY + A_Y'(t - T) + B_Y(t - _) = F(t)

when F(t) does not grow faster than an exponential function. If

-st
Y(t) = G(t) on [0,_], we multiply by e and integrate from

to co.

OO --
y(s)e'TSds

=o

[A0s + B 0 + A_se -_s + B_e-_S]-I [ f F(t)e-Stdt + H(s)]

where

H(s) = [AoG(_ ) + A G(0) - (A s + B )e-ST _ G(t)e-Stdt]
_ 0

Y(t) can then be found by evaluating the residues at the zeros of

-T S -T S

IA0 s + B 0 + A se + B e 1T

This however is not a simple task. A knowledge of the location of these zeros

is necessary.
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7.3 Zeros of the characteristic equation, constant coefficients: In the

interests of further simplicity we examine the characteristic equation of

the nth order system which is

) Ia .z + T

i 0 n-l i=0

-Tz
e = 0

It is convenient to write this equation in the form

n-i KeiSe-_Z(z TM + bzm-I + ...(zn + az + "-') ) = 0 ,

where K is non-negative and real.

Theorem 7.3.1: The function

n-i

F(z) = (zn + az + ...) - Kelee-_Z(z m + bzm-I + ... )

has an infinite number of zeros of the form

z = (i/_)[{log K + (n - re)log _ - (n - m)log 2k_}

+ i{2k_ + @ $ (n - m) 2} ] + o(i) ,

k = 0, + 1, + 2, ...

Proof: If we substitute

(2kni/_) n, we find

z = (I/_)[ ] + W into F(z) and divide by

F(z)/(2k_i/T) n = [i - e -m] + o(i)

Having suitably restricted ourselves to any sufficiently small neighborhood

of w = 0, we see that if k is large enough, Rouch_'s theorem guarantees

exactly one zero within the neighborhood.
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This theorem immediately rules out stability when n < m or when

n=m, K> i.

Lemma 7.3.2: Le____t%0, 0 < %0 < _/2, be arbitrary but fixed. There exists

at most a finite number of zeros of

n-i

F(z) = (zn + az + ..') - Kel_e-TZ(z m + bz m-I + "'')

in the regions

TT TT
- _ + %0 < arg z < 2 %0 ,

+ < arg z < 3_
2 %0 2 %0

-Tz n
Proof: In the first region e approaches 0 as Izl _ _, so z

-TZ

dominates F(z) and IF(z)l _ _ uniformly. In the second region e

-Tz m
approaches = as Izl - _, and e z dominates making IF(z) I -

uniformly.

Lemma 7.3.3: Let G(z) = eTZ(l + o(i)) - Kei@(l + o(I)). All but a finite

number of zeros of G(z) take the form

z = (I/T)[log K + i(8 + 2k11)] + o(i) ,

k = 0, ! i, ...

Proof: Choose any real a. To the left of a, eTz is bounded by eTa , and

Tz Ke i8 . To
the zeros of G(z) become arbitrarily close to those of e -

-Tz -Ta and the zeros of e-TZG(z) (and
the right of a, e is bounded by e ,

thus of G(z)) become arbitrarily close to those of i - KeiSe -Tz
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Theorem 7.3.4: Le_.__t{Zk] be an infinite sequence of zeros of

n-1
F(z) = (zn + az + -.') - KeZee-TZ(z m + bz n-I + ...)

Then the sequence can be represented by

z = (i/_)[{log K - (n
n

m) log 2k_ + (n - m) log T]

+ i{e + 2k_ $ (n - m) _/2]] + o(I) ,

as k = 0, + i, + 2, ...

Proof: We can write

-met zF T zzn-m (I Ke iez (z) = e + o(1)) - (i + o(1))

for large JzI. If we let s -- z + n- m log z we see that jz IT

-met zF
if and only if Isl does. Thus z (z) becomes

G(s) = eTS(l + o(i)) - Keie (i + o(i)) ,

increases

where o(i) _ 0 as Js I _ =. Lemma 7.3.3

number of zeros of G(s) have the form

tells us that all but a finite

sk = (i/T)[log K + i(e + 2k_)] + o(i)

If

zk = xk + iyk , sk = uk + ivk ,

we have

Uk = Xk + n T- m log IXk + iYkl

n - m

Vk = Yk +_ arg (xk + iy k)
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Or

(l/q) log K + o(I) = xk +

n - m

log IXk + iYkl

(i/_)(_ + 2k_) + o(i) = Yk + n _- m arg (xk + iyk)

Now we see by Lemma 7.3.2 that arg (xk + iYk) - !_ as k _ =. Hence

Yk = (i/_)[0 + 2k_ _ (n - m) 2] + o(I)

i

Let x k satisfy

i log K = xI + n - m log lykl

Since

log K = Xk + n - m log IXk + iYkl

we see

n - m Xk + iYklIxk = I ; l°gl Yk l

= I n - m_II log [i + o(i)] I ,

since Yk must increase relatively faster than xk

Lemma 7.3.2. Thus

i
xk = xk + o(1)

as was shown in
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xk =
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(i/_)[log K - (n - m) log I (i/_)(e + 2k_ 7 (n - m) _) + o(i)I ] + o(i)

and

xk =

zk --

(i/_)[{log K - (n - m) log 2k_ + (n - m) log _]] + o(I)

(i/_)[{log K - (n - m) log 2k_ + (n - m) log _]

+ i{8 + 2k_ _ (n - m) 2} ] + o(i)

Note that this is the sameresult found in Theorem7.3.1.

Similar statements can be madeabout the zeros of exponential polynomials

with more than one exponential function. Zeros occur in chains as just

exhibited, but there may be more than one chain. Chains may go to the right,

left _ vertically or in any combination.

Note finally that the zeros becomeultimately separated by a distance

which approaches 2n.

7.4 Solution of the nth order equation by the Laplace Transform: We solve

the equation

n m

E an_iY (i) (t) + Y_
i=0 i--0

bm_iy(i)(t - T) = f(t) ,

y(t) = g(t) , 0 < t < T ,

n _ m, g(t) is n times differentiable and g(t), g'(t), ...,g(n)(t)where

and f(t) possess Laplace Transforms.
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It is an easy computation to see that

Y(i)(t)e'Stdt sly(s) - e- _. (T)si-l'J= sT g(j)

j=O '

and

oo

Y(i)( t - T)e-Stdt = e [siy(s ) + si _T i-i
-sT -st

e g(t)dt - E g
0 j=O

(i) (0)si-l-j] ,

where

_o

Y(s) = _ y(t)e-Stdt
T

Applying the Laplace Transform to the original equation, we find

Y(s) = G(s)/F (s) ,

where

m

n i e-TS iF(s) = E a .s + T. b s
i=0 n-l i= 0 m-,

[ n i-IG(s) = f(s) + e-Ts E E

i=o j=0
a ign-

(J) (T)si-l-J

+

m i-i

E E bm_ig(J) (0)si'l'J
i--o j=o

° )/ ]_. bm_iSi• g(t)e'Stdt

i=O 0
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Thus for all t > _,

y(t) 2_i

c+im

c-i_ [eStG(s)/F(s)]ds

for somevalue of c sufficiently large. To evaluate the integral we

choose c so that all the zeros of F(s) lie to the left of Re(s) = c

and then a sequence of semi-circular contours as follows. If R is a large

real number, we go from (c,-R) to _,R) along a vertical line. Then from

(c,R) to (c,-R) along a semi-circle centered at (c,0) lying to the

left of the vertical line. Wechoose a sequence of R's so that the

contours are uniformly bounded away from the zeros of F(s) and so that

It is an easy matter to show that the integral of eStG(s)/F(s) along

the semi-circle approaches 0 as R- m. Since eStG(s)/F(s) is bounded,

for any c > 0 the integrals from (c,R) to the point (c + R cos e, R sin e),
3_

_ e _ _, and from (c + R cos _, R sin _) to (c,-R), _ _ _ _ _- , can
3_

be made less than e/4 if e is close to _ and _ is close to -_ The

integral over the remainder can be madesmall (because of ets) by choosing

R sufficiently large. Thus

I _c+i_ [etSG(s)/F(s)]ds = Y,[residues of etSG(s)/F(s)]
y(t) = 2-_ c-i=

If {si] are the zeros of

etSG(s)/F(s), then

s.t

F(s) and {_i(t) e i ] are the residues of

y(t)

s.t
i

E _i(t)e
i=l
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Again it is easy to see that stability occurs only when all of the zeros

of F(s) lie in the left half plane.
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EXERCISES

ati. Showthat if each term of F(t) is less than ce and

AoY' + BoY + AIY'(t- T) + B Y(t- _) = F(t)T

IA01 # 0, then there exist constants d and b such that each

term of Y(t) is less than debt. Thus the Laplace Transform is

applicable.

(See Bellman and Cooke, "Differential-Difference Equations".)

2. State and prove an existence theorem for

alY(t) + boY'(t- T) + blY(t T) = f(t) ,

y(t) -- g(t) , O< t< T ,

when f(t) and g(t) are infinitely differentiable.
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VIII. Stability Techniques for Time-Lag Systems

8.1: There are two techniques for determining stability in general time-lag

systems: one due to L. S. Pontrjagin, and an extension of Michailov's

criterion due to A. A. Sokolov and N. N. Miasnikov which is referred to in

Popov's book. The two criteria are very closely related. However,

Pontrjagin's is somewhatmore complicated and harder to apply. It is for

this reason we present Michailov's criterion and merely state Pontrjagin's

criterion leaving the proof as an exercise.

It is obvious that the Hurwitz and Routh criteria are not applicable.

_.2 Preliminary Remarks:

function

For the sake of convenience we again consider the

n-i
F(z) -- (zn + az + ...) _ Keiee-_Z(zm + bzm-I + ...)

where K _ 0,e and T _ 0 are fixed constants.

Theorem 8.2.1: l__f n > m o__r n = m, K < i, then F(z) has only a finite

number of zeros lying in the right half plane;all lying within a semi-circle

of radius p = M + i where

n

M = sup[[fail + Klbil}l and _lail}m+l] i__f n > m ,

and

M = sup[_(lail + Klbil)/(l - K)}I] i___f n = m
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Proof: If Izl > p and Re(z) _ 0, then when n > m,

IF(z)l _ I zl n
n

52. lai{Izl n-i
i=l

m

- K _ Ibillzl n-i,
i=l

n

> Izl n M _ Izln-i
i=l

In - 1)l(IzI - l) ,= Iz -_Izln

= {Iz1%Izl - (I+M)3 +M]l(IzI - 1),

> 0

When n = m,

IF(z)l_ (1-K)IzI
n

n

_3 (fail + Klbil)Izl n-i
$

i=l

n

(i - K)[Izl n - M _ Izln-i3 ,
i=l

> 0

Note that the radius p is independent of T and @ as long as T z O.

8.3 The Michailov Criterion:

Theorem 8.3.1: If n > m, a__ssz varies from -i_ to ioo along the imaginary

axi.___._s,F(z) passes through the origin each time z passes through a zero of
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F(z). If F(z) has no imaginary zeros, the number of zeros of F(z) in

the right half plane, N, satisfies

n I

N - 2 2_ _(-i_,i_) arg F(z) ,

where A(-i=,i==) arg F(z) is the increase in arg F(z) as z varies

along the imaginary axis from -i= to i_.

Proof: Choose any y greater than p of Theorem 8.2.1. The number of

zeros of F(z) in the right half plane is given by

1

N - 2_ A arg F(z) ,

where z varies along the contour from iy to -iy along the imaginary

axis and from -iy to iy along a semi-circle in the right half plane

centered at the origin. We write

where

F(z) -- zn(l + _0(z)) ,

_(z) = (az -I + ...) - Kei0e-_Z(z m-n + bzm-n-I + ...)

Then

arg F(z) -- n arg z + arg (i + _0(z))

As z varies along the semi-circle _ arg z = _. As z - _ in the right

half plane _(z) _ 0 uniformly, and arg (i + _(z)) - 0 uniformly. The

result follows by substitution.

Corollary: If n > m and F(z) has no imaginary zeros_ then N = 0 if and only if

A(-i=o,i=) arg F(z) = n_
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Corollar__y_: If n > m, P(z) has no imaginary zeros and all of the

coefficients of F(z) are real,

N

n i

2
A(O,i_) arg F(z)

_: If n > m, F(z) has no imaginary zeros and all of the

coefficients of F(z) are reall then N = 0 if and only if

A(0,i=) arg F(z) -
n_

Theorem 8.3.2: If n = m, K< i, as z varies from -i= t__ooio° along

the imaginary axis, F(z) passes through the origin each time z passes

through a zero of F(z). If F(z) has no imaginary zeros_ the number of

zeros of F(z) in the right half plane, N, satisfies

N n i
= 2 _:_ A(-iy,iy) arg F(z)

i Kei@ -i_y) _i arg (i -
+ _ arg (i e 2_

Keiee Tiy) + o(i)

for all sufficiently large y.

Proof: If F(z) has no imaginary zeros, we write

-_ z
F(z) = zn(l - Ke1_e )(i + _(z)) ,

where

_(z) = [(az -I + ...) - Keiee-_Z(bz -I + ...)]/(I - Ke iee-_z

Then

arg F(z) = n arg z + arg (I - Keiee -_z) + arg (i + _(z))
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In the right half plane _(z)_ 0 uniformly as I zl _ _, so

arg (i + _(z)) _ 0 uniformly. Since K< i, i Kei8 -Tz- e remains in

the right half plane and cannot encircle the origin. Thus if we proceed

around a semi-circular contour as in Theorem7.3.1., along the semi-circle

A arg (i - KeiSe -_z) = arg (i - KeiSe -_iy)

and

arg (i - Ke lee Tiy) ,

n

N --
2

i
A(-iy,iy) arg F(z) + i__ arg (i - Keiee -Tiy)

2_

. o

arg (i - KelSJ ly) + o(I)

Note that when y = k_/_ the terms arg (I - KeiSe -_iy) and

arg (i - KeiSe _iy) are equal and

N _

n i

2w A(-2k_i/_, 2k_i/_) arg F(z) + o(i) ,

when k is sufficiently large.

Corollary: If n = m, K < i and F(z) has no imaginary zeros_ then

N = 0 if and only if

A(-iy,iy) arg F(z) = n_ + arg (i - Keiee -Tiy)

- arg (i KeiSe _iy) + o(I)

for all large y. N = 0 if and only if for all large k

A(-k_i/T, kwi/_) arg F(z) = n_ + o(i)
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Corollary: If n = m, K < i, F(z) has no imaginary zeros and all of the

coefficients of F(z) are real I then

N w

n I

2
A(0,iy) arg F(z)

i
+ -- arg (i Keiee "iTy) + o(i)

for all large y.

N

n i

2
A(0,k_i/_) arg F(z) + o(i)

for all large k°

Corollary: If n = m, K < i, F(z) has no imaginary zeros and all of the

coefficients of F(z) are real I then N = 0 if and only if

A(0,iy) arg F(z) = n__._+ arg (i - Keiee -Tiy) + o(i)
2

for all large y. N = 0 if and only if for all large k

A(0,k_i/_) arg F(z) n_= 2 + o(i)

8.4 P0ntrla$in's Criterion: We multiply F(z) of the previous section by

Tz
e and consider the resulting function

TZ(zn n-i Keie iG(z) = e + az + ...) - (zm + bz m- + ...)

where n > m or n = m, K < i. Clearly the zeros are left unchanged by

this multiplication.
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Theorem 8.4.1: If n > m or n = m, K< i, as z varies from -i== to

i= along the imaginary axis, G(z) passes through the origin each time z

passes through a zero of G(z). When G(z) has no imaginary zeros, G(z)

has no zeros in the right half plane if and only if

A(-k_i/_, k_i/_) arg G(z) = 2k_ + n_ + o(I)

for all large k.

The proof is left as an exercise.

As in the previous section various corollaries can be stated under

special circumstances.
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EXERCISES

I. The characteristic equation for a general linear differential-difference

equation is of the form

n m . -w. z
F(z) = E E a. zJe l

j=0 i=l lj

0 _ wI < w2 ... < _m

Extend the Michailov and Pontrjagin criteria to exponential polynomials

of this form.
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IX. Stability Techniques for Time Lag FeedbackSystems

9.1 Preliminary Remarks: We consider a linear feedback system with constant

coefficients where the open loop transfer function has a time lag, that is,

the open loop transfer function is of the form

F(s) = Ke-_Sh (s)/g(s)

n n-i
where _ is a time lag, and g(z) = z + az + .... and

m bzm-ih(s) -- z + + ... are relatively prime polynomials. If the feedback

ie
is multiplied by e and added to the input, the closed loop transfer

function is found to be

Ke-_Sh(s)/[g(s) - Keiee-_Sh(s)]

The characteristic equation is thus

F(z) = g(z) - Keiee-TZh(z) = 0 ,

the same function considered in sections 7.3 and 7.4. It was shown there

that stability is impossible unless n > m or n = m, K < I.

The techniques discussed in the previous chapter for testing for stability

are concerned with F(z) when K is fixed. In this chapter we not only

wish to test for stability, we also wish to determine which values of K, if

any, lead to stable systems.

The methods of Chapter VI can be extended to time lag systems. We discuss

them each in turn.

9.2 Nyquist Criterion: Let F(z)

n n-i
g(z) = z + az + ... , h(z)

e and _ are real constants and K

g(z) - Keiee-TZh(z), where

m i
z + bz m- + ... have no common factor,

is a real parameter.
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I E
F = Ke-_Sh(s)/g(s)

A FeedbackSystemwith Time-Lag
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Theorem 9.2.1: Let n > m or

tha_.__nnp of Theorem 8.2.1. Let

the imaginary axis from -R to

n = m, K < i; le___!tR be any number greater

CR be a semi-circular contour varying along

R avoiding the zeros of g(z) on the

imaginary axis by arbitrarily small semi-circles centered at those zeros_ and

then in the right half plane from (0,R) t__oo(0,-R) along a circle of

radius R centered at the origin. The number of times Ke-_Zh(z)/g(z)

-ie
passes through e as z varies around CR is equal to the number of

imaginary zeros of F(z). If F(z) has no imaginary zeros, let P be the

number of zeros of g(z) with positive real parts, Z be the number of

zeros of F(z) with positive real parts, N be the number of counter-

-ie -_ zh __clockwise encirclements of e by Ke (z)/g(z) as z varies around

CR. The____.nnZ = P - N.

Proof: The number of encirclements of the origin by a function as z varies

in a counter-clockwise manner around a contour is equal to the number of zeros

minus the number of poles of the function within the contour. As z varies

CR, the number of encirclements of e-i@ by Ke-TZh(z)/g(z) is thearound

-ie
same as the number of encirclements of the origin by e - Ke-TZh(z)/g(z).

This is the same as the number of encirclements of the origin by

i - Keieh(z)/g(z), which is the same as the number of encirclements of the

origin by F(z)/g(z). Since CR is a clockwise contour, Z = P - N.

Corollary: Under the conditions of Theorem 9.2.1. a necessary and sufficient

condition that F(z) have no zeros with positive real parts is that N = P.

Notice that in constructing the path of Ke-_Zh(z)/g(z) as z varies

along the imaginary axis, the magnitude of Ke-_Zh(z)/g(z) is the same as

when T = 0. Only the argument is changed by an amount -T_ when z = i_.
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Further note that M and N circles maybe used the sameas when T = 0.

If n > m, Ke-TZh(z)/g(z) approaches 0 as Jz[ approaches =. The

semi-circular part of the contour has its image in an arbitrarily small

neighborhood of the origin when R is sufficiently large. The semi-circular

part of the contour thus does not affect the numberof encirclements of

-iee when R is sufficiently large.

If n = m, K< i, the modulus of Ke-_Zh(z)/g(z) approaches K if

JzJ is sufficiently large. Since Ke'_Zh(z)/g(z) is then bounded away
-ie

from e on the semi-circle when R is sufficiently large, again the

semi-circular part of the contour cannot affect the numberof encirclements

-ieof e

If g(z) has no zeros on the imaginary axis, then Ke'_Zh(z)/g(z)

remains in a boundedportion of the complex plane.

If _ = 0 or _ and g(z) and h(z) have real coefficientssthen

the path of Ke'_Zh(z)/g(z) is symmetric with respect to the real axis.

K enters into the problem as a factor only of the amplitude• The

procedure to follow then is to draw the contour for K = I, and then by

appropriately adjusting the scale of measurementto achieve stability, an

acceptable value of K is found.

There is an alternate method which may be used which involves only

the Nyquist contour with _ = 0. This procedure was first used by

A. A. Sokolov and N. N. Miasnikov while considering the Michailov criterion.

Theorem 9.2.2: Let N(_) be the number of counter-clockwise encirclements

-i0
of e by Ke-_Zh(z)/g(z) as z varies over CR (see Theorem 9.2.1.).

Then if the path of Kh(z)/g(z) does not intersect the unit circle as z

varies over CR, N(_) = N(0) for all _ _ 0.
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Proof: If N(T) # N(0) for some T # 0, then, since the Nyquist contour

is continuous in T, there must be a TO, 0 < TO< T, for which the
- ie

Nyquist contour passes through e Thus there is an w such that

-iToW -i_
Ke h(i_)/g (i_) = e

and IKh(i_)/g(i_)l = i, which is impossible.

If the path of Kh(z)/g(z) does intersect the unit circle, let

i_ i i_ 2 i_.Je , e , ... e

be the points of intersection.

imaginary axis such that

For each _j let iwj be a point on the

Kh(iwj)/g (iwj)
iol.

J
= e

-ie
Then if Ke-TZh(z)/g(z) is to pass through e 9 we must have

-iT_. i (_-Tu0j) i@

Ke Jh(i_j)/g(iwj) = e = e

or

= (i/wj + 2k_)T )(e +oej ,

where k is an integer. Let these non-negative values of T for all

k be arranged in an increasing sequence TI,T2,T3, .... We then have

J ,

Theorem 9.2.3: If tI and t2 are in the same open interval (Ti,Ti+l),

then N(tl) = N(t2).

Tests for stability may be conducted by considering the ordinary Nyquist

diagram with T = 0.
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9.3 The Root-Locus Method: Although the Nyquist criterion is left relatively

unchanged for systems with a delay, the root-locus diagrams are radically

altered. This is to be expected, since the characteristic equation has an

infinite number of roots. We will see, however, that only a small part

of the root-locus diagram is important, and with the aid of some

construction rules, that part may be easily found.

Let F(z) = g(z) - Keiee-_Zh(z) ! where g(z)

m i
h(z) = z + bz m- + ... have no common factor, 8

n n-I
= z + az + "-.

and _ are real

constants and K is a real parameter.

Definition: The root-locus of F(z) is the set of all points z such that

z is a zero cf h(z), or for which there is a real number K,

-= < K < _, such that F(z) = 0.

TEe positive root-locus of F(z) is the set of all points z such that

z is a zero of h(z), or for which there is a real number K,

0 _ K < _, such that F(z) = 0.

The zeros of h(z) are included in the root-locus, since they are the

limit points of the zeros of F(z) for all the appropriate choices of K,

i.e., they are the zeros of F(z) when K = =.

The negative root-locus can be similarly defined. It is easy to see

that the negative root-locus for 8 is the positive root-locus for _ + 8.

Theorem 9.3.1: Let z be a point in the complex plane. The following

statements are equivalent.

(i). z is on the root-locus of F(z).

m

(ii). cos(e -.ry)Im(h(z)g(z)) + sin (8 - _y)Re(h(z)g(z)) = 0
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Proof: Suppose z is on the root-locus. If g(z) # 0, then for some

K # 0, Kei0e-_Zh(z)/g(z) = i. Thus

h(z)/g(z) = K-le_cos (0 - _y) - i sin (0 - _y)]

h(z)g(---_) K-le_X I _cos sin (0 _y)]= g(z) 1 (0 - Ty) - i -

Since K, _, x are real,

Re(h(z)g(---_)) K-le_XIg(z)l 2-- cos (0 - _Y) ,

Im(h(z)g(---_)) = _ K-le_XIg(z)12 sin (0 - Ty)

Multiplying the first by sin (0 - Ty), the second by cos (0 - _y) and

adding achieves (ii). So (i) implies (ii).

Conversely, if (ii) is satisfied, then Im(eiee-_zh(z)_)) = 0.

So ei0e-_Zh(z)_) = R(z)_ where R(z) is real. If R(z) = 0, then

either h(z) = 0 or g(z) = 0_ and z is on the root-locus. If

R(z) # 0, let K = Ig(z)12/R(z). If K = 0, then g(z) = 0 and z

is on the root-locus. If K # 0, then Keiee-_Zh(z)/g(z) = i and

F(z) = 0. So (ii) implies (i).

Note that K can be found by

or by

K e_Xlg(z)l 2= cos (0 - _y)/Re(h(z)g(z))

K eq-Xl 2= - g(z)l sin (0 - _y)/Im(h(z)g(z))

More can be said if g(z) and h(z) have real coefficients.
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Theorem 9.3.2: l__f g(z) and h(z) have real coefficients, then z is on

the root-locus if and only if

k 2k+l 2k÷l(-i) y
cos (8 " ¢Y) E E

k=0 (2k + i) '" i=0

(_l)2k+l-ih(i)(x)g(2k+l-i)(x)

= (- l)ky2k 2k

+ sin (e - _y) _ (2k)_
k=0 i=0

(_l)2k-ih(i)(x)g(2k-i)(x)

Proof: This follows from Lemma 6.3.3. and Theorem 9.2.1.

Theorem 9.3.3: If g(z) and h(z) have real coefficients_ the root-locus

contains the entire real line (y = 0) if and only if 0 = 0 or _ = _.

Proof: If the x-axis is contained in the root-locus, then y = 0 is a

solution of the equation in Theorem 9.3.2. Thus sin 0 = 0 and _ = 0

or _ = _.

The converse is trivial.

Definition: A point on the root-locus is a multiple point if for

some value of K the point is a multiple zero of F(z) or if the point

is a multiple zero of h(z),

Theorem 9.3.4:

satisfy

The multiple points of the root-locus are isolated and

h(z)[g'(z) + ¢g(z)] - g(z)h'(z) = 0

Proof: If

Eliminating

z is a multiple zero of F(z), then F(z) = 0 and F'(z) = O.

Keiee -¢z results in the above equation, a polynomial of degree n + m.
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Theorem 9.3.5: The points on the root-locus of F(z) are continuous

functions of K.

Proof: This follows from Hurwitz's Theorem.

Theorem 9.3.6: With the exception of the multiple points_ the points on

the root-locus of F(z) are differentiable functions of K.

Proof: Let z0 be a simple zero of F(z) when K = K0. We need to

show that

limit z - z0

K - K0 K - K 0

exists when z is a point on the root-locus and z _ z0 as K- K0.

We have

0 = g(z) Keiee-TZh(z) ,

0 = g(z) - K0eiee-¢Z - (K - K0)eiSe-¢Zh(z ) ,

0 = (z - z0)W(z ) - (K - K0)eiee-¢Zh(z) ,

where W(z0) # 0 and

w(z0)
z=z 0

K=K 0

From this we find that

z - z0
limit

K - K 0
K _ K 0

_8 -_z
e _ e 0h (z0)

• -¢z 0
g'(z 0) - Kelee (h'(z O) - ch(z0) )
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The Positive Root-Locus:

Theorem 9.3.7: As x becomes arbitrarily large to the right_ the positive

root-locus of F(z) approaches

y = (i/_)(e + 2k_)

in the right half plane asymptotically, where k = 0, _ i, _ 2, ...

Further, K-_ = as x-_ _.

As x becomes arbitrarily large to the left, the positive root-locus of

F(z) approaches

y = (i/T)(e - (n - m)_ + 2k_)

in the right half plane asymptotically_ where k = o, _ i, _ 2, .....

Further, K-- 0 as x - -_.

Proof : Let

i@e -_ Zhu(z) = e (z)/g(z)

and consider only those values of z greater in absolute value than the

zeros of g(z) and h(z). For those values of z the positive root-locus

of F(z) consists of all points where u(z) is real and u(z) > O, i.e.,

arg u(z) = 2k_ for some integer k.

Now

arg u(z) = e - _y + arg h(z) arg g(z)

For bounded y, as x-_ _, arg h(z) -_ 0 and arg g(z) -_ O. Thus for

bounded y, as x -_ ==, arg u(z) -- 8 - _z + o(I).
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Chooseany e > 0 and then any y -- (i/T)(e + 2k_) - (i/T)e, where

k is an integer. If z = x + iy, arg u(z) = 2k_ + e + o(I). By

choosing x > x0 so that Io(i)I < c/2, we see that

arg u(z) -- 2k_ + _, where _ is between ¢/2 and 3e/2. Similarly if

x > xI and y = (i/_)(e + 2k_) + (i/_)e, arg u(z) = 2k_ - 6, where 6

is between ¢/2 and 3¢/2. Choose x so that x > x0 and x > xI.

Consider a straight line between

and

z0 -- x + i(IH)(e + 2k_) + i(1H)c

zI = x + i(I/_)(e + 2k_) - i(I/T)¢

Since arg u(z) is continuous in z, at some point between z0 and Zl,

arg u(z) = 2k_ and u(z) > 0.

Note that as x- _, larg h(z) arg g(z)l - 0 so that ¢ may be

chosen arbitrarily small. Further note that for z approaching the asymptotes

K is given by

K = e-iee_Zg(z)/h(z) = e_Xxn-m(l + o(i)) ,

as x _ =, so that K _ = as x _ =.

The second part of the theorem follows by replacing z by -z.

Note that those values of K for which the root-locus crosses the

imaginary axis increase as the root-locus becomes farther away from the

origin. This means that for fixed K, most of the zeros of F(z) lie in

the left half plane, and also that it takes a larger value of K to force

more to cross the imaginary axis. Thus only a finite part of the complex

plane near the origin needs to be considered.
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Theorem 9.3.8: Le..__t

g(z) = n (z - pj) j
J

and

Bj
h(z) = H (z zj)

J

where _j_j. = n __and Ej_j = m. __As K approaches 0 _.j distinct

branches of the positive root-locus of F(z) approach each zero, pj, of

g(z). As K approaches =, _j distinct branches of the positive root-

locus of F(z) approach each zero, zj, of h(z).

Proof: This follows directly from Hurwitz's Theorem.

Definition: The angle of departure (arrival) of the root-locus of F(z)

at z0 is the angle made at z0 by the tangent to. the root-locus for

increasin$ (decreasing) K.

Theorem 9.3.9: If pj is a zero of g(z) of order _j, then the positive

root-locus of F(z) departs from pj making angles

[
= (i/_j) |Y. _i arg (pj - zi) - E _. arg (pj -_j

j i#j J
pi ) + _ - _yj - 2k_) ,

• - i a d yj =where k = 0,i, ..., _j

If z. is a zero of h(z) of order _j,-- j

of F(z) arrives at z. makin_ an$1es
-- j

I

• = I_ arg - pi )_j (I/_j) _i (zj

\

Im(pj) .

then the positive root-locus

i#jE _j arg (zj - zi) - _ + _yj + 2k_

where k = 0,i, ..., _j - i and yj = Im(zj).
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Proof: Consider one of the branches of the positive root-locus which departs

from pj. Choose K close to 0, and let z be on that branch for that

value of K. Then we have

• _il o_.
KeZee-_Z H (z - zi) H (z - pi ) z

i i

= I

Taking arguments,

_' _i arg (z - zi) _ _i arg (z - pi ) + e - _y = 2knu

Solving for those terms involving pj, and letting K approach 0 completes

the first part of the proof. The second part is similar.

Theorem 9.3.10: Le_._.ttz0 be any point on the real axis, h(z) and g(z)

r s be the real zeros of h(z) andhave real coefficients, {zi_ I and {pi} I

g(z) _reater than z0 and e = 0 (e = TT). Then z0 is contained in the

positive root-locus of F(z) if and only if

r s

Z B i + T. _i
i=l i=l

is even (odd).

Proof: Consider the case where e = 0. Since g(z) and h(z) have real

coefficients, zeros of g(z) and h(z), if complex, occur in conjugate

pairs. On the real axis, if zI and z I are complex conjugates, then

arg (z - Zl) + arg (z - Zl) = 0

Now as in the proof of Theorem 9.4.1 , consider

-TE

u(z0) = e 0h(z0)/g(z0)
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On the real axis

arg U(Zo) = _' _i arg (z 0 - zi)
i

_i arg (z 0 - pi ) ,
i

where the sums are taken over real zeros greater than Zo, complex zeros

adding to give O, zeros less than z 0 being 0. Each of the arguments

left equal _. If

r s

Z _i + Z _i
i=l i=l

is even, then

r s

i=l i=l

is even, u(z0) > 0 and z0 is on the positive root-locus. If

r s

E B i + E _i
i=l i=l

is odd, then

r s

i=l i= I l

is odd, u(z0) < 0 and z 0 is not on the positive root-locus. The case

@ = _ is similar.

Theorem 9.3.11: If the coefficients of g(z) and h(z) are real, @ = 0
m

_), and F(z) has a zero of order m at z = a on the real axis for

K = K0, 0 < K 0 < _, then the positive root-locus arrives at z = a making
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_k = 2k_/m , k = 0,I, ...,m - i ,

and departs from z = a making angles

_k = (2k + l)_/m , k = 0,i, ...,m - i ,

or arrives at z = a making angles

e k = (2k + l)_/m , k = 0,I, ...,m - i ,

and departs from z = a making angles

_Pk = 2k_/m , k = 0,i, ...,m - I

Proof: Since the coefficients of g(z) and h(z) are real, for _ = 0

or if, if the zeros of g(z) - Kei_e-_Zh(z) leave or arrive at the real

axis, they do so in conjugate pairs as K varies from 0 to K 0. Thus

the evenness or oddness of the number of zeros of g(z) plus zeros of h(z)

Koei_e -_to the right of z = a is the same as that of g(z) - Zh(z) and

h(z).

Write

F(z) = G(z) - K0ei0e-¢Zh(z) - (K- K0)eiee-_Zh(z) = 0 ,

where z is on one of the branches of the positive root-locus near a. Let

Koeieg(z) - e-_Zh(z) = (z - a)mG(z), where G(a) # O. G(z) is real on

the real axis. Then

(z - a)mG(z) - (K- K0)eiee-_Zh(z) = 0

Dividing by the second term and taking arguments,
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m arg (z - a) + arg G(z) - arg (K - K0) - 0 + _Y - arg h(z) = 2k_ ,

where k is an integer. Thus

arg (z - a) = (l/m)(- arg G(z) + arg h(z) + arg (K - K0) + 0 - Ty + 2k_)

Now arg G(z) + arg h(z) + _ - _y + 2k_ approaches either an even or odd

multiple of _ as z approaches a, since G(z) and h(z) are non-zero

and real on the real axis and

depending upon whether K > K0

the proof.

y = 0. Arg (K- K0) is either 0 or

or K< K0. Letting K approach K0 completes

The most frequent occurrence is when there is a double zero of

the real axis for somevalue of

and _P0 = 0, _01 = _ or 00

_i = 3_12.

K. In this case 00 = _/2, 01

= 0, 01 = _ and _0 = _/2,

F(z) on

= 30/2

From the preceding theorems it would appear that the root-locus for

time lag systems is similar to those with no time lag. This similarity,

however, is superficial. The root-locus diagrams becomeradically altered3as

-Tz 2 Ke-_z = 0 as well assimple examples such as z - Ke = 0 and z -

the asymptotic theorem will testify.

A rather easy procedure has been found by YaohanChu for constructing

time lag root-locus diagrams. It consists of first constructing a diagram with

no time lag and using this diagram to construct the time lag diagram. We

refer the reader to his paper rather than reproduce it here.

_.4 J. I. Neimark's D-Partitions: While the Nyquist and root-locust are

changed in some way by the inclusion of a time lag, the method of D-Partitions

is unaltered with the exception of changing the number of components from

finite to countable. Statement of the various properties of the D-contour appear
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in Section 6.4. The proofs offered there are still valid.

reason that we only state the procedure.

The method of D-partitions is as follows.

It is for this

n n-Ii. The graph of K -- e-iSe_Zg(z)/h(z) where g(z) = z + az + ...

m i
h(z) = z + bzm- + ... have no con_nonfactor and 8 and _ are

real constants is drawn as z varies from -i_ to i= along the

imaginary axis.

2. The left side of the graph is shaded locally.

o The number of zeros of F(z) = g(z) - KeiSe-TZh(z)

plane is determined in one of the regions, e.g.,for

in the right half

K = 0.

. The number of zeros of F(z) in the right half plane in the other

regions is determined from the one already determined by considering the

shadings on the boundary between adjacent regions.

5. The stable situations, if any, are then found by inspection.

As with the ordinary method of D-partitions the real power of the

method lies in the information it gives concerning acceptable values of K.



150

EXERCISES

. Show that the equations of the tangent lines of the time lag root-locus

approach the equations of the asymptotes of the time lag root-locus as

the root-locus approaches the asymptotes.
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X. Stability of Two Parameter Systems, Neimark's D-Partitions

In this chapter we consider the behavior of the zeros of a polynomial

with two linear parameters. The method used is due to J. I. Neimark and is

similar to his method when there is only one parameter involved, but with

somesubstantial changes. While the method of D-partitions with one

parameter has sufficient freedom so that the parameter can be considered as a

function of a complex variable, if two parameters are involved, there is only

enough freedom to permit them to be real valued. Furthe_ there are times

when the method is not applicable.

As in the one parameter case, the image of the imaginary axis in the z

plane divides the parameter plane up into various regions. In each region

the characteristic polynomial has the samenumber of zeros in the right and

left half-planes.

A shading rule is found enabling the user to determine which points are to

the left or right of the imaginary axis in the z plane.

Let F(z) = _P(z) + _Q(z) + R(z_ where

P(z) = Pl(z) + iP2(z) ,

and

Q(z) = Ql(Z) + iQ2(z) ,

R(z) = Rl(Z ) + iR2(z)

are polynomials in z; PI' P2' QI' Q2' R1 and R 2 are real valued. Then

F(z) = 0 is equivalent to
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_Pl(Z) + _Ql(Z) + Rl(Z ) = 0 ,

_P2(z) + _2(z) + R2(z) = 0

If we let

a(_) =

PI (z) QI (z)

P2 (z) Q2 (z)

Rl(Z) QI (z)

R2(z) Q2 (z)

A_(z) =

Pl(Z) Rl(Z)

P2 (z) R2(z)

and A(z) # 0, then

= - A (z)/A(z) , = - a (z)/A(z)

If A(z) = 0, then the two equations are dependent, determining a line

in the (_,_) plane, when A (z) = gv(z ) = 0, or the two equations are

inconsisten% and no solution exists when A (z) # 0 and A (z) # 0.

It may happen that A(z) m 0 for all z. In this case our method

fails. We exclude this possibility from consideration.

Definition: If A(z) = A (z) = A (z) = O, the line senerated in the

Qa,_) plane by F(z) = 0 is called a line of singularity.
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Definition: Under the mappinE

-- - A (z)/n(z) , _ = - a_(z)/A(z)

the image in the _,_) plane of the imaginary axis in the z plane together

with the limit points of the image is called the graph of ordinary points.

Definition: The lines of singularity and the graph of ordinary points

constitute the D-contour.

Theorem i0.I:

of regions.

The D-contour divides the complex plane up into a finite number

Theorem 10.2: F(z) has a zero on the imaginary axis if and only if (_,_)

is on the D-contour.

Proof: The D-contour is determined by letting z take on all values iw,

and then finding out which points in the (_,_) plane F(i_) = 0 determines.

Theorem 10.3: In each region in the (_,_) plane determined by the

F(z) has the same number of zeros in the right and left half-planes.

D-contour

Proof: Suppose there were two points within the same region with different

numbers of zeros in the left and right half-planes. Then along any arc within

that region connecting the points there must be a point where some of the zeros

of F(z) lie on the imaginary axis. This point must lie on the D-contour,

giving a contradiction.

Theorem 10.4: The image of the left half-plane lies locally to the left of

the path taken by (_,_) along the graph of ordinary pointS as z varies

fro_____mm-i= t__oo+i_, when A(z) > 0, and lies locally to the right of the path
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taken by (_,v) along the _raph of ordinary points as z varies from

-i_ to +i_, when A(z) < 0.

Proof: The mapping from the z plane into the w plane,defined by

w = - R(z) ,

is orientation preserving. (See the proof of Theorem 6.4.3.) Now, the

mapping from the w plane into the (_,_) plane, defined by

w -- _P(z) + _Q(z) ,

or

Re w = _Pl(Z) + VQl(Z)

Imw = _P2(z) + vQ2(z) ,

is known to be orientation preserving if

(Re w_ Im w) > 0
_,_)

and orientation reversing if

3(Re w, Im w_ < 0
(_,_)

(See Taylor, "Advanced Calculus", page 430. ) Since

(Re w _ Im w)

(_,_)

DRe w _Im w

_Re w Dim w

I" _U _

-- A(z) ,

the result follows.

We therefore introduce the following shading rule: As z varies from
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-im to +i_, and (_,_) varies along the graph of ordinary points, we shade

locally to the left in the (_,v) plane, when A(z) > 0, and locally to the

right, when A(z) < 0. The shaded area then corresponds to points lying near

the imaginary axis but in the left half plane.

The lines of singularity must sometimes also be shaded. The rule here

is not quite so simple. These lines must be shaded so that they are compatable

with the shading given the graph of ordinary points.

For example,if the graph of ordinary points passes through (_0,_0), and

&(z) changes sign so that the shading changes, then the line of singularity

through (_0,_0) must be shaded in the opposite direction from the

graph of ordinary points. In this case, as in all other cases, if a circle

is drawn around (_0,_0), the net increase in zeros in the respective half-

planes as Q_,_) varies around the circle is zero.

The method of D-partitions with two parameters is as follows.

i. Construct the graph of ordinary points.

2. Fill in the lines of singularity.

3. Shadethe appropriate side of the graph of ordinary points.

.

.

,

Shade the lines of singularity so that the net increase in zeros of

F(z) in the right and left half-planes is zero, when _,_) follows

any closed contour in the (_,_) plane.

Find the number of zeros of F(z) in the respective half-planes for

one of the regions in the Qa,_) plane determined by the D-contour.

Determine the zeros of F(z) in the respective half-planes for the

other regions in the O_,v) planes by considering the shadings.

[



157

7. Choose values _ and v so that F(z) has no zeros in the right

half-plane.

The following remarks are in order. The precedure can be extended to

problems with non-linear parameters. In this case the requirement that

&(z) _ 0 is replaced by the requirement that the Jacobian

_(Re F_ Im F) _ 0

The fact that P(z), Q(z) and R(z) were polynomials had very little

to do with the method. This procedure works just as well for exponential

polynomials, for example.

The points at z = + i_

points in the z plane.

are to be considered as well as the finite

im are not to be ignored.
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EXERCISES

i. Give a proof of Theoremi0.i. Send the author a copy.

2. Extend the method of D-partitions to differential-difference systems.



,
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XI. A General Stability Criterion for Feedback Systems

ii.i Introduction: It seems that no author writing about this subject can

resist the temptation to include a section on non-linear systems. Usually

discussed are Laipounoff's second method, the Polncare-Bendixson phase plane

analysis, describing functions or certain other linearization techniques.

We prefer, instead, to present a rather general stability criterion, which

applies to both linear and non-linear systems. This criterion is very

powerful and easy to use. It gives results which, even in the linear case,

are not available by the other techniques. It does, however, require a

more general setting than we have previously used -- that of a Banach Space.

11.2 Banach Space: Let X be a set of elements f,

X is a linear space if _f + _g is in X whenever

and _ and _ are arbitrary complex numbers.

A norm is a function denoted by 11"II with domain

non-negative real numbers, satisfying the following:

: II 11

f # 0 ,

for any f and g in X and _ any complex number.

associated with it, it is a normed linear space.

A Cauchy sequence in X is a set of elements fl'f2 '''''fn'''"

such that for any ¢ > 0, there is an N such that, if m and n

greater than N, then IIfn - f II<m c.

g, h, etc. We say

f and g are in X,

X and range the

If X has a norm

in X

are
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The space X is complete if every Cauchysequence fl,f2, "'" 'fn' "'"

in X has a limit _ f) in X. That is,

II HU n- II--°
II U

n-._ _

A Banach space is a complete_ normed_ linear space.

11.3 ExamPles of Banach Spaces: The simplest example of a Banach space is,

of course, the real number system,where the norm of a real number is its

absolute value. Other simple examples include the plane E2 with its

Euclidean norm, three dimensional space E 3,

E n. The norm of x = (Xl,X2, ...., Xn) in

1

or even n dimensional space

En is given by

Other possible norms include

or

, i_ p<_ ,

11xjl: supixi,
i--l, ...,n

, p = co

Actually all these norms are equivalent.

Another set of not quite so simple Banach spaces is the

i _ p _ _. x = (Xl,X2, ...,Xn, ...)

= , I_ p<_ ,

_P

is in _P when its norm,

spaces,
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or

It II I I

II II i=l, •.•,n

is finite. In this case the norms are not equivalent.

A still more interesting class of Banach spaces is the function

spaces. Let Q be an arbitrary interval. If we use the Lebesque integral

and agree to identify functions differing only on sets of measure zero, then

the set of all functions, f, satisfying

{! x)
form a Banach space _P, i < p < =. is defined by using the norm

xcQ

These spaces are all infinite dimensional. The norms are not equivalent.

Another° pair of interesting Banach spaces use the ordinary sup norm.

Let Q denote an arbitrary interval. Then B(Q), the set of all bounded

functions on _, and C(_), the set of all bounded, continuous functions

on _, form Banach spaces.

11.4 Operators on a Banach Space:

Definition: Let X be a Banach space. A function,

range in X, is called an operator.

A, with domain and

Definition: If

A(f + g) -- Af + Ag ,
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an__!d

A(otf) = otAf ,

for any f and g in X and any complex number _, then A is a linear

operator.

If A fails to satisfy one of the preceding conditions, it is non-linear.

Definition: The operator A is bounded if there exists a constant K such

that

lIA_ll< _If,lr

for all f in X. The smallest such number K for which this is true is

calledthenormofA andis_e.otedb_IIAll
It is easy to see that

flAil: ll'i ;0IIA.li'H'II

Definition: The operator A satisfies a Lipschitz condition if there exists

a number K such that

ll__II__ll_glf

for all f and g in X.

Definition: The operator A is continuous at f if

limit Af = Af ,
n

n _ _

whenever

limit f = f
n

n -_ co
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that is, if for every c > 0 there is a 6 > 0 such that IIAfn - Af II < C,

whenever IIf - f ll < 6. An operator, continuous for all fin X, is

continuous.

The following theorem is of special interest in uniting these concepts.

Theorem 11.4.1: If A is a linear operator the following are equivalent.

i. A is a bounded operator.

2. A satisfies a Lipschitz condition.

3. A is continuous at 0 in X.

4. A is continuous.

Proof: We show that i = 2 = 3 = 4 = i.

I = 2: If A is bounded, then

IIA_11_JLAIIILfII

for all f in X. Replacing f by f - g,

and

IIA_Agll:llA_fg_IL_IIAIIIL_gll

IIA_Agll_IIAIIll_gII

2 = 3: Suppose [fn} - 0 as n- m. Since A is linear, A(0) = 0.

The Lipschitz condition guarantees

llAfn °ll_ KII_o°II

From this it is obvious that Af _ 0, as f -- 0, and A is continuous at 0.
n n



165

3 = 4: Suppose {fn} _ f as n _ _. Since A is continuous at 0, we see

limit A(f n - f) = 0
n _ _

But this is equivalent to

limit Af = Af
n

n _ _

since A is linear.

4 = i: Suppose A _ere not bounded. Then there would exist a sequence

{fn] in X such that

LIA_nll> n11_oll

foreacho.SinceA islinea_wocandividebyllfnlltoarriveat

LIAgnIL> n

foralln,wherego: fnlllfnILThusIIgoll° i.Butifh
we have

= gn/n,

limit h = 0
n

n_

since IIhnll = l/n, and llAhnll > i. This is a contradiction of the

assumption of continuity of A.

One final statement of passing interest is the "closed graph theorem",

which states that any linear operator, defined for all elements in X, is

continuous, and hence, Lipschitzian and bounded. We shall not prove it here.

The theorem is false for non-linear operators.
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11.5 Examples of Operators on Banach Spaces: The simplest example of a linear

operator L is to multiply by a constant. That is,

Lf = o_f ,

for some complex number _. Obviously the norm of L is I_I.

Another more interesting example is that of multiplying any element

in En by a matrix. If

x

X

x I

x n

ml n

, M = ) ,

i

Jmnn

I mll

mnl

then Lx = Mx is a bounded linear operator no matter which norm is used.

If X is a function space, we have some examples which are quite useful

in physical situations. If f is in X, such operators as multiplication

by an arbitrary function m(x), that is,

Llf (x) = m(x) f (x) ,

convolution,

L2f(x) = _ m(x - t)f(t)dt ,

or more generally an integration of the form

L3f(x) = 7 m(x,t)f(t)dt

and finally a time-lag or shift operator,
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L4f(x ) = f(x- a) ,

are frequently encountered.

It is easy to see that LI is boundedby

ess sup Im(x)l

in _P(_), i < p _ =0,

L 2 is bounded by

B(_) and C(f_).

Im(x)l dx

in _i(_), and in certain instances by

in _2(_). In _=o(n), B(f_) or C(_)

Im(x) ldx

L 2 is again bounded by

L 3 is bounded by

ess sup Im(x,t)Idt
X

fl

in _i _q), by

IS Im<x
nn

in _2 (Q), and in _=o(f_), B(f_) or C(_) by

ess sup Im(x,t)Idt
t
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L4, when appropriately defined, has i for a bound.

Somenon-linear operators frequently encountered are the squaring operator,

Qf = f2

which is unbounded, the dead zone operator, Zf, and the saturation operator,

Sf. Thelast two are affected only by the modulus of f. The slope of

any line lying above these graphs in the first quadrant will serve as a

bound for these operators.

11.6 A Simple Feedback System in a Banach Space: Let us consider the

following simple feedback system, _, in X. The "input" or forcing function,

f, is operated on by the operator, F, giving the "output" or response, r.

r itself is operated on by G and the result, Gr, is subtracted from f

giving an "error", e. e is then "fed back" to be operated on by F.

Mathematically _ can be described by

f - G(r) = e ,

F(e) = r ,

or by the single equation

F(f - G(r)) = r

If f is in X, the question of whether or not there is an r in X

is a natural one. It is also sometimes valuable to have an idea of the norm

of r, given that of f. We present two theorems giving answers to these

questions. Note we do NOT assume F and G are linear operators.

Theorem 11.6.1: If F and G satisfy a Lipschitz condition with constants K

and L, respectively_and KL < i, the.____nnF(f - G(r)) = r has a unique
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f e

-IG(r)

' F

G

r

The Feedback System -_



168b

Zf

f

DeadZone Operator Z

Sf

Saturation Operator S
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solution r in X.

Proof: We develop an iterative procedure to give a sequence of elements in

X which converge to r. Let

r I = F(f) ,

r 2 = F(f - G(rl)) ,

and in general

rn+l = F(f - G(rn))

Each r is in X, and
n

 IIrnirn211

We see by induction that

and

J rn+m

Thus the sequence {r n}

-rnll _ (KL)nIIF(f)II /[i KL]

is a Cauchy sequence in X and has a limit, r, in X.
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Further,

II

r - r +F(fn - G(rn_l))- F(f- G(r))I[ '

rn - rn-i

which approaches 0 as n _ _. Thus

r = F(f - G(r))

If r and r' are both solutions in X, then

llrrli__llrrlJ<JJrrfI
which is a contradiction unless r = r'

As with ordinary differential equations, this method of successive

approximations gives a procedure for calculating r as well as an estimate

of the error involved.

It is also important to note that this theorem guarantees uniqueness

only in X. It is quite possible for _ to have solutions not in X, and

in so doing destroy "stability", which we have not yet defined in this setting.

Theorem ii.6.2: If F and G are bounded= respectively, by K and L,

KL < I, an____dF(f G(r)) = r has a solution in X, then

IIrII__ _ il_lJ
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Proof:

Thu s

and the result follows.

II,II=ll_fG_r_II

Corollary: If F and G satisfy a Lipschitz condition with constants K

an____dL, respectively, KL< i, and F(0) = 0, G(0) = 0, then

F(f - G(r)) = r has a unique solution r i__n_nX, and

II,II__K,_I_ llfII
Proof: Since F(0) = 0, the Lipschitz condition

ll_fFgl1_KII_gll
with g = 0, shows that K is a bound for F. Similarly, L is a bound for

G. The results follow from Theorems 11.6.1 and 11.6.2.

11.7 Stability in a Banach Space: The following definition is a convenient

choice. It is motivated by the rather loose definition "bounded inputs have

bounded outputs'_ which is sometimes seen.
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Definition: The System, _ described by

F(f - G(r)) = r

is stable iflfor all forcing functions, f, in

always an element of X.

X, the response, r, is

It is entirely possible for f to be in X with r not. Such systems

are unstable.

Some of the Banach spaces most frequently encountered while working with

feedback systems are _P(o,=), i _ p _ _, C(O,_) and B(O,=). In practical

applications the elements in these spaces are functions of time, t, which varies

from 0 to =. If negative times are considered, the elements are assumed to

be zero when t < O.

Let X(0,N) denote any of the spaces _P(o,N), i _ p _ _, B(O,N) or

C(O,N), where 0 < N _ _. We denote the norm in X(O,N) by .II" ..fINunless
||

N = =. In that case we denote it by II" Jl.
i| I;

Stability Theorem 11.7.1: Le__.!tf be in X(O,=), and let r be in X(O,N)

for all finite N > O. Suppose for all g and h i._nnX(0,N), for all N > 0,

that Fg, Fh, Gg and Gh are in X(O,N), and satisfy

ll g hJlNKFJghJIN

flog0hiINLlfghlIN

with KL < i. The__._nr is i.____nnX(0,m) and is identical with that of

Theorem iI.6._.

The proof is identical to the uniqueness part of Theorem 11.6.1.
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Stability Theorem 11.7.2: Let f be in X(0,=), and let r be in X(0,N)

for all finite N > 0. Suppose for all g i__n X(0,N), for all N > 0, Fg

and Gg are in X(0,N), and satisfy

with KL < I. Then r is in X(0,=), and

IfrlJKI l-

Proof: We have F(f - G(r)) = r. Thus

and

Letting N- = completes the proof.

11.8 Applications:

I< p_<o=,

as

and

I,

sufficient number of derivatives to vanish at

Again let X(O,==) denote any of the spaces _P(0,=),

B(0,_) or C(0,_).

In the feedback system we considered in Chapter VI, F was expressed

h(D)/g(D), where h and g were polynomials with constant coefficients

ie
G was a multiplication by -e In this case, in X, the norm of G is

while F is not uniquely defined. However, if we require Ff and a

0, Ff is unique, and can be
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expressed in terms of a Green's function as

t
r(t - u)f(u)du

0

The norm of F on X(0,=) is therefore

co

Ir(t)Idt

0

As an example,let F = K(D + a) -I, a > 0, and G = i.

t

-a(t-u)Ff(t) = K e f (u)du

0

The norm of F is IKl/a. Theorems 11.7.1 and 11.7.2 tell us that if

IKI < a, the solution, r, of

t

K _ e-a(t-u)[f(u) - r(u)]du = r(t) ,

0

or of

(D + a + K)r(t) = f(t) , r(0) = 0 ,

is in X(O,_) when f is, and further that

-i
If F also involves a time lag, T, i.e., F = Ke-_D(D + a) , the

results are still valid.

As a final example,let us consider the system, _,in which F = F I

G = G I Z, where

nI n 2 n3]-I
F I = K[(D + al) (D + a2) (D + a3)

S,
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a. > 0, S is a saturation operator,
i

Sf =
f , Ifl <i ,

sign f , Ifl > i ,

G I = _(D + bl )ml

m 2
(D + b 2) ]-i, b. > 0, Z is a dead zone operator,i

Zf =

f+l , ifl<-i ,
0 , f < I ,

f - I , f > i •

Then F I is bounded by

n I n2 n3

K/a I a 2 a 3

S by i, G I by

L/blmlb2 m2

and Z by I. Theorems 11.7.1 and 11.7.2 tell us that J is stable when

nI n 2 n 3 m I m 2
KL/a I a2 a3 bI b 2 < i ,

and in that case

nI n 2

IIrll _ [K/al a2 a3n3]

[ I - KL/a I a2 a3 b I b 2 ]
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EXERCISES

i. Let A be a bounded linear operator on a Banach space, X. Showthat

2. Find a bound for (D2 + 2D+ 4)-1 .
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Appendix I. Computer Program for the Ordinary

and Time-Lag Root-Locus Methods

To have a computer give data for or actually draw a Michailov, Nyquist

or Neimark diagram is a relatively easy task. The calculations are straight

foreward computation• The computer is ideally suited for such a purpose•

The root-locus diagrams are somewhatmore complicated. Upon first

inspection it seemsappropriate to let K take on various values and then

factor g(z) - Keieh(z), but if this is attempted, certain problems

immediately arise• First, what range should K have? Second, in factoring

the polynomials,how much error is incurred? Each successive factor incurs

more error. Third, in what part of the complex plane will the zeros of the

polynomials to be factored lie? Most factoring techniques need a good first

estimate to work at all. For reasons such as these, factoring g(z)

is rejected as a reasonable procedure.

Let us consider the case where 0 = _ and the coefficients of g(z)

h(z) are all real, since this is what occurs in physical applications.

this instance the formula of Theorem 6•3.4,

Keieh(z)

and

In

= (-I)ky2k+l 2k+l
E E

k=0 (2k + i) '. i= 0 2k_l) i) 2k+l-ih (i) (x)g (2k+l-i) (x)• (-
= 0

provides an excellent method of attack• For each fixed value of x, the left

side of this equation is a polynomial in y. The real zeros of the polynomial

in y, together with the fixed value of x, determine points on the root-locus.

A computer is well designed to permit x to range over a certain set of points,

for instance from -i0 to 0 in tenths and then find the zeros of the resulting

polynomial in y, thus finding the root-locus in that interval on the x-axis.
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Rather than factor the resultant polynomials in y, it is more con-

venient to let y range over a set of values, such as the integers, and look

for sign changes. Whenan interval is found with the resulting polynomial

in y taking on different signs at the ends, the interval is itself split

into pieces and examined for sign changes. In this manner each point on

the root-locus may be accurately found without accumulating errors.

Various attempts have been madeto find accurate extimates for the

largest zero of the resulting polynomial in y. Nonehave proved reasonable.

It seemsbetter to arbitrarily restrict y just as x is. Usually only

the root-locus near the origin is of interest, so this does not seem

unnecessarily restrictive.

The procedure used in programming the time-lag root-locus is the same.

The formula used is found in Theorem9.3.2 and is

cos Ty
2k+l

.(-I )ky2k+l

k=0 (2k + i)'. Ei=0

(- ih(i) (x)g (2k+l- I (x)

sin Ty
(.l)ky2k 2k

E (2k + I)' E
k=0 " i=0

(-l)2k-ih (i) (x)g (2k-i) (x) = 0 °

A program has been written at the Pennsylvania State University with very

satisfactory results.
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Appendix ii. Examples for the Graphical criteria



Bode Diagram

181

201ogl01F(iy) l

.I •,2 ,3 ...... ]. ,3 . , , ,, ,,_0 2=0 Y

F(z) = Cz+I} (z+2} (z+3) (z2-2Z+2)

(z-I)(z- 2) (z-3) (z-4) (z2+2z+2) (z2+4z+5)



182

Bode Diagram

argF(iy)

,

.I _

-2

F(z) ,,
(z+1)(_+2)(_+3)(_2-2z+2)

(z-l)(z-2)(z-3)(z-4)(z2+2z+2)(z2+4z+5)



F(z) =

Bode Diagram

(z+5) ('-+7)(z+9)

(z+lO) (z+12) (z2+4z+8) (z2+lOz+41) (z2+20z+125)

183

201OgloIF(iy) I

-82

-84

-86

.88 ¸

-90

-92

-94

-96

-98

-I00

-102

-104

-106

-108

.i
o2 .3 . . ; ,,,
f • i • - - . - •_2 ._3 ,' : ; ; ,';i.0 20 , Y

-ii0
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Bode Diagram

argF (iy)

Y

F(z) --(Z+5)(z+7)(z+9)
(z+10)9z+12) (z2+4z+8) (z2+10z+41) (z2+20z+125)



Michailov Diagram 185
20

ReF(z)

-i00 -80 -60 -40 -20_

_"J ! I I/

-20.

-40

-60

-I00.

\ 20
I

F(z) = (z+l)2(z+2)

-120'

ImF(z)



186 Michailov Diagram

20

-20
,!

-20

-40'

-60'

-80'

-i00

ImF(z)

20
|, i

ReF (z)

F(z) = (z2+4z+8) (z2-2z+5)



Nyquist Diagram

187

Im(h (iw)Ig (i_))

Re (h • 5

h(z) = (z÷!) (z+2) (z+3) (z2-2z+2)

g (z) (z-l) (z-2) (z-3) (z-4) (z2+2z+2) (z2+4z+5)



188 Nyquist Diagram

Im(h (iw)/g (iw)) . 4.10 -5

Re(h_w)/g (i_)) _

3e_0-5 " ' " h0-5 2_i0-5 3 10-5

_10-5

_2,10-5

-4 ,i0 -5

h(z)/g(z) = (z+5) (z+7) (z+9)/(z+10) (z+12) (z2+4z+8) (z2+10z+41) (z2+20z+125)



Root Locus

189

(z-l) (z-2) (z-3) (z-4) (z2+2z+2)(z2+4z+5) + K(z+l) (z+2) (z+3) (z2-2z+2)

Drawn by an IBM 7074 Computer

=0
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01"1"
0
t'_

Locus

cn

0 rt
0
ct

00:

(z+10) (z+12) (z2+4z+8) (z2+10z +41) (z-+20z+125)9 + K(z+5)(z+7) (z+9) = 0

Drawn by an IBM 7074 Computer

(_

%0

orl-
0

0_"
0
ft"

Ix0

0

X

I
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Neimark D-Partition

I0

-120

ReK
10 60 -40 20

K = - (z-l) (z-2) (z-3) (z-4) (z2+2z+2) (z2+4z+5)

(z+l) (z+2) (z+3) (z2-2z+2)
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Neimark D-Partition

ImK
3,105

•105

-3,105
!

3o105
|

ReK

.105

K = - (z+10) (z+12) (z2+4z+8) (z2+10z+41) (z2+20z+125)

(z+5)(z+7)(z+9)
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v



194 Michailov Diagram

ImF(iw)

-I000
I

i000 2000 ReF (iw)
I I '

F(z) = (z3+3z2.2) + ½e'Z(z 3)

-3000

-4000

-5000

-6OOO

-7000
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Nyquist Diagram

ImF (iw)

•.04

ReF(im)

03

e-2Z
F(z) = (z+l) (z+2) (z+3) (z2-2z+2)

(z-l) (z-2) (z-B) (z-4) (z2+2z+2) (z2+4z+5)



196 Nyquist Diagram

2 10-5

-5

,10-5 -2
_I -5 -5

ReF (iw)

3 10 -5

0-5

F(z)
-Z

= e

-4 10 -5

(z+5) (z+7) (z+9)/(z+lO) (z+12) (z2+4z+8) (z2+lOz+41) (z2+20z+125)



!

!

Root Locus

(z-l) (z-2) (z-3) (z-4) (z2+2z+2) (z2+4z+5) +

+ Ke "2z (z+l) (z+2) (z+3) (z2-2z+2)

Drawn by an IBM 7074 Computer

i

= 0
197

|



I

:i
198

Root Locus

(z+10) (z+12) (z2+4z+8) (z2+10z+41) (z2+20z+125) +

+ Ke "z (z+5) (z+7) (z+9) = 0

Drawn by an IBM 7074 Computer

!

!
÷

÷



Neimark D-Partition

ImK

400

199

300

200

-4OO -300 -200 -I00 i00 200 ReK

-200

°300

°400

2z

K = _ e (z-l) (z-2) (z-3) (z-4) (z2+2z+2) (z2+4z+5)/(z+l) (z+2) (z+3) (z2-2z+2)



2OO Neimark D-Partition

ImK

3w105

2 el05

i0 5

__,i0 5 05 5 2 05 3 ,io5
|

ReK

0 5

Z
K -- - e (z+10) (z+12) (z2+4z+8) (z2+10z+41) (z2+20z+125)/(z+5) (z+7) (z+9)



Neimark D-Partition

_(z+l) + _(z2+z) +(z2+iz+i) = 0

201

-I

-2

IIIIIIIIIIII!1t
(line of singularity for y = i_)

-5
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7

4

Neimark D-Partition

_(z2+z) + _(z-l) +i(z2-2z+l) = 0

{_ = i, line of singul_ for y = 01

-6
i, line of singularity for y = i_)



Errata to"Stability Techniques for Continuous Linear Systems"

Page i: Insert between paragraphs 2 and 3:

Note that arg z and arg f(z) are multiple valued functions. A

principal determination can be made by choosing that value between--

and _. Throughout the remainder of the book statements concern-

ing arguments will be made for each fixed, but arbitrary, value of

the function involved.

Page 3: Replace Line 2 by:

A function differentiable in this sense over a region D is

said to be analytic in D.

Page 4: Start Theorem 1.2 with:

Let f(z) = u(z) + iv(z) be defined in a region D.

region" found later in the statement of the theorem.

Omit "a

Page 6, the footnote. Let it read:

We will mean by a contour a continuous curve consisting of

a finite number of simple rectifiable arcs joined end to end. A

simple arc is the image of a closed finite interval under a con-

tinuous mapping such that no point on the arc is the image of

more than one point in the interval.

Page I0, Theorem 1.4. Let it read:

Theorem 1.4: (Cauchy's formula) Let f(z) be analytic in a

region D and let C be a simple closed contour in D. Let z be on

the interior of the region with boundary C. Then...



Page 13, Theorem 1.5. Let it read:

.... D with boundary C, ---

Page 14, The Definition, Let it read:

--- where llm f(z) =
Z_Z

O

can be extended analytically

to z but ---
O

Page 15: Definition, Let it read:

... except for a finite number of poles in a region D, then

f(z) is meromorphic in D.

Page 15, Theorem 1.7.

1!

After "z I -- zn

Replace " singularities" with "poles".

, insert "interior to C".

Page 19: Exercise 5. Let it read:

-- of radius p > 0 with ---

Exercise 8. Let it read:

--- f(z) = _ An(Z-Zo )n, valid for

I

Pl < Iz - Zol < P2' ---


